Department of Automotive Technologies – Vehicle Mechanics Fundamentals

Gábor Sipos

Lecture 1

12.02.2025.

Basic information

Introduction

contact: gabor.sipos.uni@gmail.com

Subject

Goal

Participation: Lectures and labs

Tests

Signature

- Midterm exams ~6&14th weeks
- Submitted semester championship documentation
- Based on the result of tests, final mark can be obtained, and no need for exam

Exam

Note

To prepare for exam/tests presentations will be uploaded to Moodle, but the some of the slides aren't – therefore to have the full picture lectures shall be attanded.

- Milliken and Milliken, 1996 W.F. Milliken, D.L. Milliken Race Car Vehicle Dynamics, Society of Automotive Engineers Inc., Great Britain (1996)
- H. B. Pacejka 2006 Tyre and Vehicle Dynamics Butterworth-Heinemann
- Racecar: Searching for the Limit in Formula SAE Matt Brown Seven Car Publishing 2011

Quiz

How to convert 1 radian to degree [°]?

- A. Multiply 1 rad with $\frac{\pi}{90^{\circ}}$.
- B. Divide 1 by π .
- C. Multiply 1 rad with $\frac{180^{\circ}}{\pi}$.
- D. 1 radian and 1 degree [°] marks the same amount of rotation.

Quiz

How to convert 1 radian to degree [°]?

- A. Multiply 1 rad with $\frac{\pi}{90^{\circ}}$.
- B. Divide 1 by π .
- C. Multiply 1 rad with $\frac{180^{\circ}}{\pi}$.
- D. 1 radian and 1 degree [°] marks the same amount of rotation.

Basic information

Week nr.	Date		Lecture (Wednesday)		Lab (Wednesday)	
1	12th Feb	1	General information, Tyre, Driving force		1	Lab
2	19th Feb	2	Longitudinal and lateral behaviour			
3	26th Feb	3	Concepts and over/understeer		2	Lab
4	5th Mar	4	Weight transfer			
5	12th Mar	5	Bicycle model		3	Lab
6	19th Mar	T1	Midterm exam I.			
7	26th Mar	6	Braking and brakes		T1 R	Exam 1 - replacement
8	2nd Apr	-	Systems of the vehicle			
9	9th Apr	7	Break			Break
10	16th Apr	8	Quarter vehicle model	model		
11	23th Apr		Break			Break
12	30th Apr	T2	Systems of vehicle II. ONLINE			
13	7th May	9	Tyre management		4	Lab
14	14th May	10	Midterm exam II.			
15	21st May		Racecar engineering		T2 R	Exam 2 - replacement

Some mechanical aspects

	Reason of the motion	Inertia	Equation of motion	Dynamics principle
Rectilinear motion	F [N] force	m [kg] mass	$F = m \cdot a$	$\dot{I} = \sum F$
				i : Impulse derivative
Circular motion	M [Nm] torque	θ [kg m²] Moment of inertia	$M = \theta \cdot \varepsilon$	$D_c = \sum M$
				D _c : kinetic torque

	Quantities		W Work done by	Work-energy principle
Rectilinear Motion	$I = m \cdot v$ impulse	$E = \frac{1}{2} \cdot m \cdot v^2$ Kinetic energy	$W = F \cdot \Delta s$	$W = \Delta E_{kinetic}$
Rotational motion	$N = \theta \cdot \omega$ Angular moment	$E = \frac{1}{2} \cdot \theta \cdot \omega^2$ Rotational energy	$W = M \cdot \Delta \varphi$	$W = \Delta E_{rotational}$

Vehicle dynamics blocks

	vertical dynamics	lateral dynamics	longitudinal dynamics
	$ \begin{array}{c} m_{s} \\ k_{s} \\ m_{W} \\ k_{w} \\ \hline m_{w} $	$\begin{array}{c} \delta \\ v_{\rm f} \\ \alpha_{\rm f} \\ \beta \\ v \\ M \\ \rho_{\rm M} \\ Bicycle \ {\rm modell} \end{array} F_{y{\rm f}} \\ F_{y{\rm f}} \\ m v(\dot{\psi} + \dot{\beta}) \\ \ell_{\rm f} \\ m v(\dot{\psi} + \dot{\beta}) \\ \ell_{\rm f} \\ r \\ F_{y{\rm f}} \\ F_{y{\rm f}}$	$F_{xf} = \frac{\ell_f}{F_{zf}} + \frac{\ell_r}{G} + \frac{\ell_r}{F_{xr}} + \frac{\ell_r}{F_{zr}}$ Iongitudinal modell
Features	 Vertical vibration Wheel loads comfort 	 steering Lateral acceleration Self aligning torque Critical speed 	 Acceleration and braking resistances: tyre,air, uphill – power requirement; Engine characteristics and gears Braking and driving forces
Parameters	m_s – structural weight m_w – wheel weight k_t – tyre stiffness k_s – spring stiffness c_s – damping u - movement	l – wheelbase l _f – CoG distance m – weight v – vehicle speed α – slip angle δ – steering angle	h – CoG height G – gravity force F _{xf} – front axle driving force F _{zf} – tyre forces at front

Abstract thinking

What's the main function of a racecar?

Why racecars?

Interview question of McLaren F1

Why porpoising affects more the top teams?

F1 2022 EARLY TALKING POINTS

Interview question of McLaren F1

Why porpoising affects more the top teams? If you are power limited rather than griplimited, you do not really lose any performance. It mostly happens in high speed corners and straights.

Newton's second law

BMW advertisement

 The ALL-NEW BMW 3 SERIES.

 Wer cert

 Wir gert

 Stiffer chasts

 Wiger gert to e 55 kg.

cornering stiffness balance to reach good handling.

Why racecars?

Front wing change F1

Coordinates in vehicle dynamics

 DoF

Coordinates in vehicle dynamics

Vehicle dynamics fundamentals

- Tyre
 - the only contact with the ground ideally
 - The most important part of the car.
- Racing tyre
 - The most important part of the car.
 - The suspension, the areodynamics, the powertrain are areas that try to optimize the tyre performance
 - The main feedback to the driver comes from the tyre
 - Why racecars?

Load distribution along the contact patch – not driven wheel

Tangential stress

Load distribution along the contact patch – not driven wheel

Source: Reimpell, J., Sponagel, P.: Fahrwerktechnik: Reifen und Räder. Vogel-Verlag, Würzburg (1995)

 R_{stat} – Static radius is the distance measuring from center of the wheel to the supporting surface.

 R_0 – Radius of a tyre unloaded, new condition.

Example: FS racecar with different R₀ radiuses caused top speed difference. What are the other effect(s)?

$$ec{M}=ec{r} imesec{F}$$

 $ec{M}=ec{r} imesec{F}$

Dynamic radius

Dynamic radius

 R_{dyn} – dynamic radius is characteristic that can be calculated from the distanced travelled in case of rolling wheel without slipping

Dynamic radius

Reifen	$r_0 [\mathrm{mm}]$	$r_{\rm stat} [{\rm mm}]$	$U[\mathbf{mm}]$	$r_{\rm dyn}$
$185/65\mathrm{R}15$	311	284	1895	302
$195/65\mathrm{R}15$	318	290	1935	308
$205/65\mathrm{R}15$	324	294	1975	314

Quelle: Reimpell 1995

- The typical value of R_{dyn} is between R_0 and R stat.
- If we mark as ,f' bumping the difference between R_0 and R_{stat} , then we can say $R_{dyn} = R_{stat} + 2/3f$

$M_h = R \cdot F_x$ $v = R \cdot \omega = R \cdot 2\pi \cdot n_h$

Different radiuses

Tyre vertical stiffness

Tyre vertical stiffness

$$F_z = rac{m \cdot g \cdot \%_F}{2} [N]$$

k: spring stiffness; F_z : normal force ; $\%_F$: first axle load; m: vehicle weight

Tyre vertical stiffness

- Progressivity
 - effect of air
 - tyre effect
 - sidewall structure
 - sidewall size
- Curve fitting
 - approximation of stiffness
 - k*z

Tyre nomenclature

- 205 –tyre width [mm]
- 55 ratio between tyre height and width [%]
- R structure (R/D)
- 16 rim diameter inches
- 91 load capacity index
- W speed limit (W=270 km/h)

Tyre structures

- Radial strings +belts
- Advantage
 - better roadability
 - less sensitivity to pot-holes
- Disadvantage
 - bigger driving noise
 - higher costs

- Crossplies
- Advantages
 - less vulnerable
 - easier to manufacture
- Disadvantages
 - lower spring-comfort
 - poor manoeuvrability
 - worse grip-warming-tyre wearing

Longitudinal slip – slip ratio

v – vehicle speed [m/s]; ω – angular velocity [1/s]

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

Characteristics depends on tyre!

What could the colours mean?

What could the colours mean?

- Fz=200 - Fz=400 - Fz=600 - Fz=800 - Fz=1000 - Fz=1200 - Fz=1400 - Fz=1600

Longitudnial friction coefficient

$$\mu_{\rm x} = \frac{\mathbf{r}_{\rm x}}{\mathbf{F}_{\rm z}}$$

Г

μ_x:

- longitudinal friction coefficient
- friction coef.

Fx belongs to maximum grip

$$F_{x,max} = \mu_{max} \cdot F_z$$

46

Phases of slip ratio

	WRdyn	v >	w K _{dyn}
driven wheel	spinning wheel	braking	wheel blocked
P vp	M P vp	v v v v v v v v v v v v v v v v v v v	v P mm
driving	ı slip	brakin	g slip
$=\frac{R_{dyn}\cdot\omega-\nu}{\nu}$	κ = ∞	$\kappa = \frac{R_{dyn} \cdot \omega - \nu}{\nu}$	κ = -1
	driven wheel $\int \frac{W}{P} \frac{W}{V} \frac{W}$	driven wheelspinning wheelImage: spinning wheelImage: spinnin	driven wheelspinning wheelbrakingImage: Non-image of the spinning wheelImage

Quelle: Popp, Schiehlen 1993

Tab. 3.6: Gegenüberstellung unterschiedlicher Schlupfdefinitionen am Beispiel des Längsschlupfes für ein in der Vertikalebene rollendes Rad

Antreiben Schlupf für Bremsen	$\frac{v_C - \omega r_e}{v_C}$	$\frac{\omega r_e - v_C}{v_C}$	$\frac{\omega r_e - v_C}{\omega r_e}$	$\frac{\omega r_e - v_C}{\omega r_e}$ $\frac{v_C - \omega r_e}{v_C}$
Quelle	wir	[3.18]	[3.19]	[3.20]
Schlupfwert für durchdrehendes Rad $\omega \rightarrow \infty$	00	00	1	1
Schlupfwert für blockiertes Rad $\omega = 0$	1	- 1	00	1
Schlupfwert für frei rollendes Rad $v_C = \omega r_e$	0	0	0	0

v_c Translationsgeschwindigkeit des Radschwerpunktes in Richtung der Radebene

ω Winkelgeschwindigkeit des Rades um die Radachse

re effektiver Rollradius

Bibliography

- <u>https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.wired.com%2F2008%2F05%2Fff-</u> formulaone%2F&psig=AOvVaw1Jpc66dH0FE0zK_Le6ev <u>D&ust=1612202433180000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNDU7Z_gxu4CFQAAAAAdAAAAABAD</u>
 <u>bttps://www.google.com/url2ca=i8url=https%3A%2F%2Ftbpcuriouscetropomor_wordpross_com%2Ftag%2Faagular</u>
- https://www.google.com/imgres?imgurl=https%3A%2F%2Fi0.wp.com%2Fotrwheel.com%2Fwpcontent%2Fuploads%2F2016%2F08%2FradialvsbiasplyFINAL.jpg%3Fresize%3D630%252C301&imgrefurl=https%3A%2F%2Fotrw heel.com%2Fotr-blog%2Fradial-vs-bias-needknow%2F&tbnid=y0Ea_MrsrdG3gM&vet=12ahUKEwi4sPLjvM7uAhUjqnEKHTx0AewQMygFegUIARCiAQ..i&docid=0Oz8itZjkydoIM &w=630&h=301&q=tyre%20%20bias%20ply%20radial&ved=2ahUKEwi4sPLjvM7uAhUjqnEKHTx0AewQMygFegUIARCiAQ

Thank you for your attention!

