Design goals and requirements Lecture 3

Schedule

Week nr.	Date	Lecture (Wednesday)			La	b (Wednesday)	Comment
1	09.04.	1	General information		1	Lab	
2	09.11.	2	Development methods		2	Lab	Online
3	09.18.	3	Design goals and requirements 3		3	Lab	
4	09.25.	4	Conceptualization I	alization I 4 L		Lab	
5	10.02.	5	Design guidelines	Design guidelines 5		Lab	
6	10.09.	6	Testing strategies in the automotive industry		6	Lab	
7	10.16.	T1	Midterm exam I.				
8	10.23.	В	National holiday				
9	10.30.	7	System level testing		T1 R	Exam 1 - Retake	Online
10	11.06.	8	Performance and reliability testing		7	Lab	
11	11.13.	9	Troubleshooting and error calculation		8	Lab	
12	11.20.	10	Project management		9	Lab	Online
13	11.27.	T2	Midterm exam II.				
14	12.04.	T2R	Exam 2 - Retake				

Agenda

BME Automotive Technologies

- Importance of defining design goals and requirements in vehicle engineering
- Stakeholder analysis
- Types of requirements
- Requirement gathering techniques
- Documenting requirements
- Prioritizing
- Case studies and examples

Importance of defining design goals and requirements in vehicle engineering

- Goals
- Requirements
- Specification

The Golden Circle

WHAT

Every organization on the planet knows WHAT they do. These are products they sell or the services

HOW

Some organizations know HOW they do it. These are the things that make them special or set them apart from their competition.

WHY

Very few organizations know WHY they do what they do. WHY is not about making money. That's a result. WHY is a purpose, cause or belief. It's the very reason your organization exists.

Importance of defining design goals and requirements in vehicle engineering

- Goals
 - Or Objectives?
 - Vision

america-es/ papama /motorsportandevents/motorsport/generalinformation/news/?id=e252e826-fb6b-440a-887e-e2797a9577bb&pool=motorsport&lang=en : https://www.varooms.com/blog/6-types-of-office-lavouts-engineer-them-for-productivity

BME Automotive Technologies

Importance of defining design goals and requirements in vehicle engineering

- Requirements
 - Needs-> Requirements, Specification
 - Source
 - Law
 - Regulation
 - Rule book, Technical or Sporting regulation
 - Customer (demand)
 - Directives from upper management
 - Economics requirement
 - Own expectation

https://www.researchgate.net/figure/General-requirements-in-vehicle-development_fig2_312390804

Importance of defining design goals and requirements in vehicle engineering

Benchmarking

• Level of Specification

- The process of comparing a product's performance, features, and design against industry standards or competitors. Helps to identify areas for improvement and set realistic performance goals. <u>Competitive</u>, <u>Industry</u> and <u>Functional</u> benchmarking
- Performance comparison
- Identify best practices
- Set realistic goals
- Process
 - Identify benchmarking targets
 - Gather data
 - Analyze data
 - Implement improvements

Benchmarking

• Level of Specification

- The process of comparing a product's performance, features, and design against industry standards or competitors. Helps to identify areas for improvement and set realistic performance goals. <u>Competitive</u>, <u>Industry</u> and <u>Functional</u> benchmarking
- Performance comparison
- Identify best practices
- Set realistic goals
- Process
 - Identify benchmarking targets
 - Gather data
 - Analyze data
 - Implement improvements

Compare w/ direct competitors' products. Focus on features, performance and customer satisfaction.

Compare against industry standards and best practices. Focus on overall trends.

Compare specific functions or features. Example: safety features, fuel efficiency or acceleration

- Aim: all relevant perspectives shall be considered.
- Stakeholders are:
 - Customers
 - Users
 - Managers
 - Suppliers
 - Regulators

BME Automotive Technologies

Stakeholder analysis

- 1. Identify stakeholders!
- **2**. Assess their interest and influence
- **3**. Determine their requirements and expectations.
- 4. Develop strategies for effective communication and engagement.

- 1. Identify stakeholders!
- 2. Assess their interest and influence
- 3. Determine their requirements and expectations.
- 4. Develop strategies for effective communication and engagement.

<u>Project owners</u> Show competence Create a product Marketing

Supplier/Partner Development Education through exciting projects Research

Supplier/Partner Marketing

Development

<u>Customer / User</u> Gentleman drivers Wish to accelerate Laptime Mix old and new tech

This case study represents only some specific perspectives of a complex cooperation project.

- Techniques for gathering stakeholder input
 - Interviews
 - One-on-one discussions causing personal engagement but time-consuming.
 - Surveys and Questionnaires
 - Collecting information from a large group of stakeholders with standardized data. However, risk of low response rate and limited depth.
 - Workshops / Focus groups
 - Group discussions to gather diverse perspective and generate new ideas, challenge regarding group dynamics and time schedule.
 - Observation
 - Monitoring current system's users getting real-world insights, could be time-consuming.
 - Document analysis
 - Analyzing current documents and historical data, base understanding possibly outdated information.
 - Prototyping
 - Preliminary versions of product to get feedback with chance of early validation but resource-intensive solution.

- Techniques for gathering stakeholder input
 - Customer: QFD Quality function deployment

Types of requirements

- Functional requirements
- Non-functional requirements
- Technical requirements
- Business requirements
- User requirements
- Regulatory requirements

Types of requirements

- Functional requirements
 - Fuel efficiency, range, acceleration
- Non-functional requirements
 - Temperature operation range, w/o failure range, safety standard compliance
- Technical requirements
 - Material specs, design standards, braking distance, engine power output
- Business requirements
 - High level needs: production cost reduction, shape
- User requirements
 - Easy handling of display, comfortable seats
- Regulatory requirements
 - Compliance with laws, standards, regulations

Prioritze requirements

- Prioritizing requirements is essential because it ensures that the most critical features and functionalities, which have the greatest impact on customer satisfaction and project success, are addressed first.
- This process helps allocate resources efficiently, manage time effectively, and reduce the risk of project delays by focusing on what truly matters to stakeholders.
- Tools:
 - MoSCoW
 - Kano Model
 - Weighted Scoring
 - Value vs Effort

Prioritze requirements

MoSCoW method

- Mo: Essential for system success
- S: Important but not critical
- Co: Nice to have is time and resources permit.
- W: Not included in this release but potentially later.

Kano model

- Custormer satisfaction vs Quality of execution
- Basic needs
- Performance needs
- Excitement needs

Prioritze requirements

Weighted scoring

 Assigning weights to requirements based on factors like importance, cost and feasiblitity.

	Target cost	Functionality 1	Objective 1		Sum
Weights	10	4	5		-
Require ment 1	84	45	40		=(10*84)+(4*45)+(5*40)
Require ment 2	74	29	56		=(10*74)+(4*29)+(5*56)

The Value vs. Effort Matrix

Value vs Effort matrix

- Quick wins
- Major projects
- Fill-ins
- Time sinks

Documenting requirements

- Requirements Specification Document (RSD)
 - A comprehensive document detailing all requirements.
 - Introduction, purpose, scope, functional and non-functional requirements, constraints, assumptions
- Requirement Traceability Matrix (RTM)
 - A tool to ensure each requirement is covered in design, development and testing.
 - Requirement ID, desciption, source, priority, status, related test cases
- Use cases
 - Detailed descriptions of how users will interact with the system
 - Actors, preconditions, flow of events, postconditions, exceptions
- User stories
 - Brief descriptions of a feature from the end-user perspective ullet
 - "A user wants this and this in order to be faster."

echnolooies

Automotive

Documenting requirements

• Requirements Specification Document (RSD)

Table of Contents

Table of Contents ii
Revision Historyiiii
1. Introduction 1
1.1 Purpose1
1.2 Document Conventions1
1.3 Intended Audience and Reading Suggestions1
1.4 Product Scope1
1.5 References
2. Overall Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Classes and Characteristics
2.4 Operating Environment
2.5 Design and Implementation Constraints
2.6 User Documentation
2.7 Assumptions and Dependencies9

• Requirement Traceability Matrix (RTM)

REQUIREMENT TRACEABILITY MATRIX								
Project Name:	E-commerce Application							
Project ID:	112							
Business Requirmeen	t Document (BRD)	Functional Requirement	Functional Requirements Document (FSD)			Test Case Document		
BR_ ID	BR_User Case	FR_ID	FR_User Case	Priority	Test Case ID	Status	Comments	
BR_1	Product Listing	FR_1	Sort by	High	TC_001 TC_002 TC_004	Finished	Dec 1: Testing started Dec 6: Defect reporte Dec 12: Defect Fixed Dec 15: FS_ Passed	
		FR_2	Filters	High	TC_001 TC_002 TC_003	Finished	Dec 1: Testing started Dec 6: defect reporte Dec 12: Defect Fixed Dec 15: FS_ Passed	
BR_2	Payment Module	FR_3	By Credit Card	High	TC_005	In progress	Dec 1: Testing started	
		FR_4	By Credit Card	High	TC_006	In progress	Dec 1: Testing started	
		FR_5	By Reward/Referral	Medium	TC_007 TC_008	Not Started		

https://www.saviom.com/blog/requirement-traceability-matrix-and-why-is-it-important/_; https://www.jamasoftware.com/requirements-management-guide/writing-requirements/how-to-write-system-requirement-specification-srs-documents;

Case study - Functional

Requirement group	Requirement	Dimension	Comment
Performance	Load profile		
	Distance		Race distance, sporting format
Torsional stiffness	Axis x		
	Axis y		
	Х		
	Υ		

Case study - Functional

5

https://www.racecar-engineering.com/tech-explained/how-to-design-a-motorsport-battery-in-7-steps/ ; https://canopysimulations.com/2017/05/02/dynamic-simulation/;

Case study - Functional

Requirement group	Requirement	Dimension	Comment
Performance	Load profile		
	Distance		Race distance, sporting format
Torsional stiffness	Axis x		
	Axis y		
	Х		
	Υ		

Case study - NonFunctional

Requirement group	Requirement	Dimension	Comment
Design costraints			
Regulatory requirements			FIA compliant, any specific req.
Safety	Sealing		IPXX?
	Telemetry		Channels, power sup.
	Safety procedures, indication		Lights, statuses
Interface	Mechanical		Mounting, assembling
	Safety		Water flooding, etc
	Electrical		LV, HV, Comm
Operability			SoC, SoH, Charging, Storage etc
Reliability	Temperature and humidiy range		
	Lifetime		Cycles? Races?
	Vibration	Load profile?	X,Y,Z

https://www.racecar-engineering.com/tech-explained/how-to-design-a-motorsport-battery-in-7-steps/

Case study - NonFunctional

Requirement group	Requirement	Dimension	Comment
Efficiency			
Modifiability	Equity		ВоР
Transfersibility			Backward compatiblity
Maintainability			Timeslots, costs etc
Environmental			Full lifecycle
Facility / Security			SEASO
Transportation			CALEN
Privacy, data security			R1 MEXICO CITY,
Personnel &trainings			R2 DIRIYAH, SAUE
Risk acceptance			R3 DIRIVAH, SAUE
Documentation			R5 💽 SÃO PAULO, B
			RG TOKYO, JAPAN

ABB FORMULAC

DN 10 IDAR

PRE- EASON ESTINO	WALENCIA, SPAIN	OCT 23-27	R9	MONACO, MONACO	APR 27
R1	MEXICO CITY, MEXICO	JAN 13	R10	BERLIN, GERMANY	MAY 11
R2	DIRIYAH, SAUDI ARABIA	JAN 26	R11	BERLIN, GERMANY	MAY 12
R3	DIRIYAH, SAUDI ARABIA	JAN 27	R12	Manghai, China	MAY 25
R4	HYDERABAD, INDIA	FEB 10	R13	Manghai, China	MAY 26
RS	SÃO PAULO, BRAZIL	MAR 16	R14	PORTLAND, USA	JUN 29
RG	• TOKYO, JAPAN	MAR 30	R15	PORTLAND, USA	JUN 30
R7	MISANO ADRIATICO, ITALY	APR 13	R16	HE LONDON, UK	JUL 20
R8	MISANO ADRIATICO, ITALY	APR 14	R17	IONDON, UK	JUL 21

https://www.racecar-engineering.com/tech-explained/how-to-design-a-motorsport-battery-in-7-steps/; https://fiaformulae.com/fr/news/484407

Case study - NonFunctional

Requirement group	Requirement	Dimension	Comment
Efficiency			
Modifiability	Equity		ВоР
Transfersibility			Backward compatiblity
Maintainability			Timeslots, costs etc
Environmental			Full lifecycle
Facility / Security			Equipment needed, signs, etc
Transportation			UN38.3, specs
Privacy, data security			
Personnel &trainings			
Risk acceptance			
Documentation			Manual, reports at maintenance

Q & A

- Main objective?
- Starting point-ending point?
- Complex parts?
- Less relevant part(s), could be omitted part(s)?
- Most useful part(s)?

Closing

- Bibliography
 - See bottom of slides
- Literature
 - W. Ernst Eder: Engineering Design: Role of Theory, Models, and Methods
 - Julian Weber The Automotive Development Process: Processes for Successful Customer Oriented Vehicle Development
 - Markus Maurer, Hermann Winner Automotive Systems Engineering
 - Christian Grönroos The V-Model of Service Quality: An Application in Automotive Services
 - Gerhard Pahl, Wolfgang Beitz Engineering Design: A Systematic Approach
 - Jiju Antony Design of Experiments for Engineers and Scientists
 - Dominic Haider Automotive Functional Safety: A Complete Guide to ISO 26262
 - Bercsey Tibor A terméktervezés módszertana.Jegyzet
 - Pahl-Beitz A géptervezés elmélete és gyakorlata

Thank you for your attention!