Department of Automotive Technologies – Vehicle Mechanics Fundamentals

Gábor Sipos

Lecture 9

15.05.2023.

Week nr.	Official nr.	Date		Lecture (Monday)	Lab (date+1;Tuesday)		
1	1	12th Feb	1	General information, Tyre, Driving force		1	Lab
2	2	19th Feb	2	Longitudinal and lateral behaviour			
3	3	26th Feb	3	Concepts and over/understeer		2	Lab
4	4	4th Mar	4	Weight transfer			
5	5	11th Mar	5	Bicycle model	:	3	Lab
6	6	18th Mar	T1	Midterm exam I. ONLINE			
7	7	25th Mar	6	Braking and brakes ONLINE	4	4	Lab ONLINE
8		1st Apr	-	Break			
9	8	8th Apr	7	Systems of the vehicle			
10	9	15th Apr	8	Quarter vehicle model ONLINE		R	Exam 1 - subsequent ONLINE
11	10	22th Apr		Break			
12	11	29th Apr	Т2	Midterm exam II. ONLINE			Break
13	12	6th May	9	Tyre management			
14	13	13th May	10	Racecar engineering	T2 R Exam 2 - subse		Exam 2 - subsequent
	14	20th May	11	Semester championship presentation			

Reminder

4. Timeline

Deadline for the submission is 6th of May, 18:00. Result will be published soon. After submission deadline there is no possibility to participate in the championship. Furthermore, once after the team submitted its car, there is no possibility to change on it, even if the deadline is still not over.

over inflated properly inflated under inflated

Michelin Pilot Sport 295/30 ZR 19100Y

FORMULA 1 GULF AIR BAHRAIN GRAND PRIX 2022 - QUALIFYING

POS	NO	DRIVER	CAR	Q3	Diff	Diff %
1	16	Charles Leclerc	FERRARI	1:30.558		
2	1	Max Verstappen	RED BULL RACING RBPT	1:30.681	0,123	0,403%
3	55	Carlos Sainz	FERRARI	1:30.687	0,129	0,422%
4	11	Sergio Perez	RED BULL RACING RBPT	1:30.921	0,363	1,188%
5	44	Lewis Hamilton	MERCEDES	1:31.238	0,68	2,225%
6	77	Valtteri Bottas	ALFA ROMEO FERRARI	1:31.560	1,002	3,279%
7	20	Kevin Magnussen	HAAS FERRARI	1:31.808	1,25	4,091%
8	14	Fernando Alonso	ALPINE RENAULT	1:32.195	1,637	5,357%
9	63	George Russell	MERCEDES	1:32.216	1,658	5,426%
10	10	Pierre Gasly	ALPHATAURI RBPT	1:32.338	1,78	5,825%

tire pressure Pi

Tyre pressure change:

- cornering stiffness
- peak force

Consequences:

- different pressue
- different cornering stiffness
- different traction ellipse
- different vertical stiffness

TPMS

Temperature dependence

Considering:

- ambient temperature
- humidity
- track temperature
- gas we use

Ideal Gas Equation PV=nRT

- P = pressure (absolute)
- V = volume (gas)
- n = number of moles in the gas
- R = universal gas constant (8.314 J/mol K)
- T = temperature (K)

Ideal Gas Equation PV=nRT

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

Assume that the volume change is reasonably small:

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
Press. Temps K
bar 291,15 293,15 295,15
0,8
1
1,2
1,4
1,6
1
1,6

YourDataBriven		en	(c) 2019 www.yourdatadriven.com		Reference Data:	Target Hot Pres	sure	Temp compensation (psi / deg C)		
						Category	(psi)	(bar)	Air (psi)	Track (psi)
Rac	e Car Tyre Pressure	Setup	Calcu	lator		F1, F2, F3	18.0 - 23.0	1.25 - 1.50	0.1	0.1
						LMP, GT, BTCC	26.0 - 29.0	1.80 - 2.00		
Step		Left	Right			or				
1	Target Pressure	27	27	Front		Vehicle Mass	Cold (psi)	Target Hot (psi)	Typical Scaling	Factor Range
1070	(also Wet Setting)	26	26	Rear		Very Light < 800kg	17 – 22	22 - 29	1.29	1.32
2	Initial Scaling factor	1.15	1.2	í		Liaht 800ka - 1000ka Heavy 1000kg - 1400kg	20 - 26 23 - 27	24 - 32 28 - 40	1.20 1.22	1.23 1.48
	(use tables & track layout)	1.2	1.25			Very Heavy > 1400kg	27 - 35	37 - 40	1.37	1.14
			(C)	degC						
3	Initial Cold Setting	23.5	22.5	15	Ambient Air					
		21.7	20.8	degC						
4	Test Run - Hot Results	28.4	29.1	15	Ambient Air					
	(Used to adjust scaling)	27.1	25.9	24	Track Temp					
	Auto adjusted scaling factor	1.21	1.29							
		1.25	1.25			NO. 25				
		10100	67 - 82 83 -	degC		(psl)				
5	Adjusted Cold Setting	22.3	20.9	15	Ambient Air	0				
	(should achieve target)	20.8	20.9	24	Track Temp	0				

Compensation (psi) - Use if tyres & conditions drift after cold set

These vehicles subject tires to extreme temperature conditions, and the use of nitrogen allows better control over tire pressure as tire temperature increases. Compressed air holds moisture and the amount of moisture may vary from tire to tire. During extreme usage, the amount of moisture in the tire causes the tire temperature to increase more rapidly, and in a non-linear way that can be unpredictable.

With dry nitrogen, the effects of moisture are eliminated and the increase in tire pressure due to temperature is more linear and predictable than with air. The tires also run cooler, which is especially important in racing because the grip of race tires is highly dependent on tire temperature.

Function

- stop, decelerate the car
- help the balance of te car
- regain energy (heat/kinetic)

brakes: decreasing the velocity of vehicles, keep vehicles stopped, control speed of vehicles

groups

- by friction surfaces:
 - disc
 - band
 - drum
 - conical
- by direction of braking force
 - radial (pl.: drum brake)
 - axial (pl.: disc brake)
- by position of friction surfaces
 - outside
 - inside

- Simplex
 - more efficient left side as leading shoe, right side: trailing
- Duplex
 - two leading shoe

Self-servo effect as main principle regarding effectivity.

Disc - floating caliper

Disc vs drum

<u>Disc</u>

- pressure distribution better thorugh surface
- stability
- easier to cool, pads less sensitivity to heat
- thermal expansion towards the pads
- easier to maintain

<u>Drum</u>

- cheap
- wear is slow
- lower system pressure
- parts are covered by drum
- lower peak temperature
- self-energising
- easier to apply handbrake

Disc - floating caliper

Disc - floating caliper

Question

?

Based on a known balance bar chart by pressure measurement, what parameters of brake system should be considered to evaluate it properly?

- Pedal box geometry (e.g. Brake pedal length)
- Balance bar
- Master cylinders diameter
- Position of pressure sensor
- Propotional valve
- Piston diameter
- Pad size
- Pad type
- Diameter of disc

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

Based on a known balance bar chart by pressure measurement, what parameters of brake system should be considered to evaluate it properly? (assuming sensor position showed by figure below)

- Pedal box geometry (e.g. Brake pedal length) X
- Balance bar X
- Master cylinders diameter X
- Position of pressure sensor
- Propotional valve
- Piston diameter
- Pad size
- Pad type
- Diameter of disc

PAGID Friction and Temperature profile provided by AlconKits.com

Friction vs Temperature Graph

Anti knockback spring – what can be the purpose?

Anti knockback spring

- Brake balance chart
- Front-axle blocks / rear-axle blocks
- Bite, confidence
- Braking performance

1

- know concepts and definitions you are able to give definitions of :
 - different type of tyre radius
 - contact patch
 - tyre structures
 - slip ratio
 - slip angle
 - aware of the different characteristics of tyre behaviour and able to distinguish one from other
 - friction coefficient
 - brush tyre model and explanation of tyre force
 - able to orientate in the coordinate system of a vehicle
 - cornering stiffnes of a tyre
 - self aligning torque
 - pneumatic trail
 - friction ,cirle'
 - steady state basics equations
 - transient basics equation
 - characteristics of transient basics diagrams

2

- assymetric tyre behaviour to acceleration and braking
- static vertical tyre loads
- longitudinal weight transfer with the help of longitudinal model
- lateral weight transfer in steady state cornering
- understanding the effect of tyre degressivity and weight transfer
- braking system components
- optimal brake force distribution
- specific braking force
- EBD basic working principle
- Motorsport relevant braking aspects
- Functional structure
- Powertrain: Types of resistance
- CoP
- Gearbox/Propulsion unit: power and powered machine tuning
- Traction force diagram
- 3 main type of chassis structure
- CoG determination methods

3

- suspension basics
- brake system elements and working
- quarter vehicle model basics
- tyre management
- tyre pressure, temperature basics

Bibliography

- https://ricksfreeautorepairadvice.com/tire-pressure-recommended-versus-maximum/
- https://www.researchgate.net/figure/Tyre-characteristics-as-function-of-pressure_fig3_282574230
- https://www.researchgate.net/figure/Influence-of-inflation-pressure-on-cornering-stiffness-for-a-tire-with-full-tread-depth_fig3_275251239
- https://www.racecar-engineering.com/tech-explained/tyre-dynamics/
- https://www.euromotor.org/mod/resource/view.php?id=21462&forceview=1
- <u>https://www.tirebuyer.com/education/nitrogen-vs-air</u>
- <u>https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.ridgelineownersclub.com%2Fthreads%2Fnitrogen-in-tires.175146%2F&psig=AOvVaw1na56wTm1ane-</u> BJWtQbjjw&ust=1684216286855000&source=images&cd=vfe&ved=0CBEQjRxgFwoTCLDf1t3Q9v4CFQAAAAAdAAAAABAn
- <u>https://www.google.com/url?sa=i&url=https%3A%2F%2Falconkits.com%2Fsupport%2Fbrake-pad-info%2F41-pagid-compound-characteristics&psig=AOvVaw29r8opMnGaGDyNsYm3KfVG&ust=1684220658072000&source=images&cd=vfe&ved=0CBEQjRxqFwoTCljui4Lh9v4CFQAAAAAAAAAAAAAAAA
 </u>

Thank you for your attention!

