Department of Automotive Technologies – Vehicle Mechanics Fundamentals

Gábor Sipos

Lecture 7

314 11.04.2022.

Basic information

Week nr.	Official nr.	Date		Lecture (Monday)	I	Lab (date+1;Tuesday)
1	1	12th Feb	1	General information, Tyre, Driving force	1	Lab
2	2	19th Feb	2	Longitudinal and lateral behaviour		
3	3	26th Feb	3	Concepts and over/understeer	2	Lab
4	4	4th Mar	4	Weight transfer		
5	5	11th Mar	5	Bicycle model	3	Lab
6	6	18th Mar	T1	Midterm exam I. ONLINE		
7	7	25th Mar	6	Braking and brakes ONLINE	4	Lab ONLINE
8		1st Apr	-	Break		
9	8	8th Apr	7	Systems of the vehicle		
10	9	15th Apr	8	Quarter vehicle model ONLINE	T1 R	Exam 1 - subsequent ONLINE
11	10	22th Apr		Break		
12	11	29th Apr	T2	Midterm exam II. ONLINE		Break
13	12	6th May	9	Tyre management		
14	13	13th May	10	Racecar engineering	T2 R	Exam 2 - subsequent
	14	20th May	11	Semester championship presentation		

Note

Next Tuesday Midterm retake starts at 8:20

General engineering approach

- functional structure
- main function, subfunction, elementary function
- CAN
- HV cables
- mounting brace

General engineering approach

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

Function structure

General engineering approach

Function structure

Function

- ensure power
- store energy?
- energy transformation (fuel/electric to kinetic)
- keep itself in proper condition
 - cooling system
 - aero

Resistance

- roll+slope+drag
- The sum of the resistance forces acting on a flat-moving vehicle:

$$F_{res} = F_{roll} + F_{air} = fmg + \frac{1}{2}\rho_{air} \cdot c_d \cdot A \cdot v^2$$

Resistance

- Rolling
- Resistance forces acting on flat-moving vehicles:

Rolling resistance:
$$F_{roll} = F_{roll1} + F_{roll2} = fF_{Z,F} + fF_{Z,R} = f(F_{Z,F} + F_{Z,R}) = fmg$$

$$F_{
m R} \cdot r_{
m stat} = e \cdot F_{
m z}$$
 $F_{
m R} = rac{e}{r_{
m stat}} \cdot F_{
m N} = f_{
m R} \cdot F_{
m z}$

Resistance

Slope

Interpretation of the slope percentage:

$$tg\alpha = e \implies \alpha = arctg(e), where 0 \le e \le 1 \text{ and } 0^{\circ} \le \alpha \le 90^{\circ}$$

Resistance forces acting on a vehicle moving on a slope:

Rolling resistance: $F_{roll} = F_{roll1} + F_{roll2} = fZ_1 + fZ_2 = f(Z_1 + Z_2) = fmgcos\alpha$

Slope resistance: $F_{slope} = mgsin\alpha$

Resistance

Drag

 $F_{air} = \frac{1}{2}\rho_{air} \cdot c_d \cdot A \cdot v^2$ Air resistance:

air density $[kg/m^3]$ where: ρ_{air}

> vehicle resistance factor [-] c_d

A

v

Resistance

(a) GT baseline

(b) GT with spoiler

(c) GT with wing

(d) GT with diffuser

(e) GT with fins

Sematic view of air resistance (drag) *red* = *thrust* (*shape*), *yellow* = friction, *green* = internal resistance, turbulence, *blue* = induced resistance)

(g) GT with wing and diffuser

(h) GT with fins and diffuser

Aero - CoP

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

Aero

$$F_{drag} = c_D \cdot A_D \cdot \frac{\rho}{2} \cdot v^2$$

$$F_{down} = c_L \cdot A_L \cdot \frac{\rho}{2} \cdot v^2$$

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

Aero - rake

$$F_{drag} = c_D \cdot A_D \cdot \frac{\rho}{2} \cdot v^2$$

$$F_{down} = c_L \cdot A_L \cdot \frac{\rho}{2} \cdot v^2$$

$$F_{drag} = c_D \cdot A_D \cdot \frac{\rho}{2} \cdot v^2$$

Mercedes Rake Angle

$$F_{down} = c_L \cdot A_L \cdot \frac{\rho}{2} \cdot v^2$$

BME

Resistance

over 80 km/h the dominant effect is the drag

THS – Toyota Hybrid System

Powertrain general layout

coal
oil
natural gas
solar
wind

producing mechanical power

steam engine steam turbine water turbine gas turbine ICE electric motor

mech. power transformation

steam engine steam turbine water turbine gas turbine ICE electric motor

mech. power usage

work machine transportation manufacturing vehicles

 Propulsion unit /Gearbox: the characteristics of (angular speed - torque) power and powered machine has to be synchronized

a.) actual status b.) required status

a.) powertrain overload not possible

b.) powertrain overload

Engine Speed (rpm)	Engine Torque (N.m)		
3500	450.00		
4500	500,00		
5500	550.00		
6500	580,00		
7500	610,00		
8500	630,00		
9500	650.00		
10500	660,00		
11500	670,00		
12500	660,00		
13500	640,00		
14500	610,00		

Driveline Model

	Gear Ratios
Gear 1	2,8750
Gear 2	1.8490
Gear 3	1,6707
Gear 4	1,2886
Gear 5	1,1462
Gear 6	0.9919
Gear 7	0.8778
Gear 8	0.7686

What else is missing?

Traction Model

Traction Model

$$efficiency = \frac{c_l}{c_d}$$

Optimum lap check!

TYPICAL UNIBODY STRUCTURE

Function

- base for mounting
 - powertrain
 - suspension
 - steering ...
- passenger zone
- let passengers in/out, ergonomics
- safety
- ensure proper torsional stiffness

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

Types - Conventional

- Conventional
- open/ non-load carrying type
- separate frame to carry the load from suspension
- bodywork can be manufactured stiff or either flexible material, it is separated by deflection rubber mountings
- obsolete because of concentrated load at mounting points

Types - Semi integral

- Semi integral
- bodywork mounting points are stiff
- some of the load transferred to bodywork
- road noise can be eliminated

Types - Integral

- Integral
- bodyshell is designed to carry all the load as a framework
- eliminates heavy load-carrier elements
- front and rear extensions, reinforcements
- lighter than any other solution
- widely used in road cars

body service information's body construction section for specific steel tensile strength information.

DEPARTMENT OF AUTOMOLOGIES

Torsional stiffness

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

Torsional stiffness

CoG height – Method 2

Sensors:

steering angle

· throttle, brake pedal

rpm

accelerations (x,y)

brake pressure

speed – GPS

wheel speed

wheel travel

temps

gear

•

CoG height – Method 2

Sensors:

- steering angle
- throttle, brake pedal
- rpm
- accelerations (x,y)
- brake pressure
- speed GPS
- wheel speed
- wheel travel
- temps
- gear
- . . .

1. Normal force from spring stiffness

$$F_{z,d} = k \cdot z_d$$

CoG height – Method 2

Sensors:

- steering angle
- throttle, brake pedal
- rpm
- accelerations (x,y)
- brake pressure
- speed GPS
- wheel speed
- wheel travel
- temps
- gear
- ...

1. Normal force from spring stiffness

$$F_{z,d} = k \cdot z_d$$

2. Normal force from the equation of weight transfer, assumed CoG height ,h'

$$F_{z,WT} = \frac{1}{2} \cdot \mathbf{m} \cdot g \cdot \frac{a_2}{w} + m \cdot \dot{v} \cdot \frac{\mathbf{h}}{w}$$

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

$$\alpha = \arcsin \frac{\Delta h}{w}$$

$$m \cdot g(a_1 \cdot cos\alpha + z \cdot sin\alpha) = F_R \cdot w \cdot cos\alpha$$

$$z = \frac{\frac{F_R \cdot w \cdot \cos\alpha}{m \cdot g} - a_1 \cdot \cos\alpha}{\sin\alpha}$$

$$m \cdot g(a_1 \cdot cos\alpha + z \cdot sin\alpha) = F_R \cdot w \cdot cos\alpha$$

$$z = \frac{\frac{F_R \cdot w \cdot \cos\alpha}{m \cdot g} - a_1 \cdot \cos\alpha}{\sin\alpha}$$

Midterm tests and exams

1

- know concepts and definitions you are able to give definitions of :
 - different type of tyre radius
 - contact patch
 - tyre structures
 - slip ratio
 - slip angle
 - aware of the different characteristics of tyre behaviour and able to distinguish one from other
 - friction coefficient
 - brush tyre model and explanation of tyre force
 - able to orientate in the coordinate system of a vehicle
 - cornering stiffnes of a tyre
 - self aligning torque
 - pneumatic trail
 - friction ,circle'
 - steady state basics equations
 - transient basics equation
 - characteristics of transient basics diagrams

Midterm tests and exams

2

- assymetric tyre behaviour to acceleration and braking
- static vertical tyre loads
- longitudinal weight transfer with the help of longitudinal model
- lateral weight transfer in steady state cornering
- understanding the effect of tyre degressivity and weight transfer
- braking system components
- optimal brake force distribution
- specific braking force
- EBD basic working principle
- Motorsport relevant braking aspects
- Function structure
- Powertrain: Types of resistance
- CoP
- Gearbox/Propulsion unit: power and powered machine tuning
- Traction force diagram
- 3 main type of chassis structure
- CoG determination methods

Bibliography

- https://www.youtube.com/watch?v=S0TIRkNWheQ
- https://www.youtube.com/watch?v=0ykCdaRzn5g
- http://moodle.autolab.uni-pannon.hu/Mecha tananyag/kozuti jarmurendszerek szerkezettana/ch13.html
- https://engineeringlearn.com/types-of-chassis-components-function-design-construction/
- https://hu.pinterest.com/pin/469781804861162853/
- https://www.sciencedirect.com/science/article/pii/S111001682030507X
- https://aia.springeropen.com/articles/10.1186/s42774-020-00054-7

Thank you for your attention!

