Department of Automotive Technologies Vehicle Mechanics Fundamentals

Gábor Sipos

Practical course 3

Examples

- GGV diagram
- Lateral WT Magic number
- Brake system calculation

GG diagram

2023 Saudi Arabian Grand Prix - Qualifying

PER (Average Accel $=2.04 \mathrm{~g}$)
LEC (Average Accel $=2.11 \mathrm{~g}$) ALO (Average Accel $=1.98 \mathrm{~g}$)

- Normally much higher braking than traction ability
- Lateral behaviour: track>setup (assymetric cambers?)
- Average acceleration

GGV diagram

2023 Saudi Arabian Grand Prix - Qualifying

- Normally much higher braking than traction ability
- Lateral behaviour: track>setup (assymetric cambers?)
- Average acceleration

GGV diagram

- Missing part: lack of acceleration, lack of power
- More theortetical envelop than measured data

GGV diagram

High speed corner left or right?

GGV diagram

High speed corner left or right?

Lateral WT ARB ratio

Static weight distribution

\%	370
260	260

Weight transfer during a corner
$220 \uparrow 520$
60

1. Total weight of the car?
2. WT Magic number' for the given example?
3. We put stiffer rear ARB by 3%, what will be the WD for the same situation?

Lateral WT ARB ratio

Static weight distribution

\%	370
260	260

Weight transfer during a corner

220
60

1. Total weight of the car? $(370+260) * 2=1260 \mathrm{~kg}$

Lateral WT ARB ratio

Static weight distribution

\%	370
260	260

Weight transfer during a corner

$$
150 \leadsto
$$

$220 \stackrel{4}{520}$
$60 \underset{200}{\mid 460}$
2. WT Magic number' for the given example? $150 /(150+200)=42,86 \%$

Lateral WT ARB ratio

Static weight distribution

\%	370
260	260

Weight transfer during a corner

220	5
60	46

3. We put stiffer rear ARB by 3%, what will be the WD for the same situation?

Lateral WT ARB ratio

Static weight distribution

\%	370
260	260

Weight transfer during a corner

220	5
60	46

3. We put stiffer rear ARB by 3%, what will be the WD for the same situation? 42,86 \%-3\%= 39,86\%

Lateral WT ARB ratio

Static weight distribution

370	370
260	260

Weight transfer during a corner

220	5
60	46

3. We put stiffer rear ARB by 3%, what will be the WD for the same situation? 42,86 \%-3\%= 39,86\%

$$
\begin{aligned}
& \frac{x}{350}=39,86 \% \\
& x=139,51 \mathrm{~kg}
\end{aligned}
$$

Lateral WT ARB ratio

Static weight distribution

\%	370
260	260

Weight transfer during a corner

220	5
60	46

3. We put stiffer rear ARB by 3%, what will be the WD for the same situation? $42,86 \%-3 \%=$ 39,86\%

$$
\begin{aligned}
& \frac{x}{350}=39,86 \% \\
& x=139,51 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{array}{r|r}
230,49 & 509,51 \\
49,51 & 470,49
\end{array}
$$

Lateral WT ARB ratio

Static weight distribution

370	3
260	260

Weight transfer during a corner

$370 \stackrel{\wedge}{4} 370$
260
260

1. Total weight of the car?
2. WT Magic number' for the given example?
3. We put stiffer rear ARB by 3%, what will be the WD for the same situation

Brake system

Brake system

Calipers

Brake pressure sensor

Brake system

Brake system

Brake system - input

Brake system

Brake system - output

Brake system

Brake system - output

Brake system

Brake system - parameters
F_{1} - Force by foot of driver
r_{1} - Ratio of balance bar
$\mathrm{A}_{1 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$p_{1 F / R}$ - Pressure in the piston F/R
F_{2} - Force at the pads
$\mathrm{A}_{2 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$p_{2 F / R}$ - Pressure at the caliper F/R

Brake system

Brake system - parameters

F_{1} - Force by foot of driver
r_{1} - Ratio of balance bar
$\mathrm{A}_{1 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$p_{1 F / R}$ - Pressure in the piston F/R
F_{2} - Force at the pads
$\mathrm{A}_{2 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$\mathrm{p}_{2 \mathrm{~F} / \mathrm{R}}$ - Pressure at the caliper F/R

Questions
a) Is $p_{1 F}=p_{2 F}$?
b) Is $p_{1 R}=p_{2 R}$?

Brake system

Brake system - parameters

F_{1} - Force by foot of driver
r_{1} - Ratio of balance bar
$\mathrm{A}_{1 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$p_{1 F / R}-$ Pressure in the piston F/R
F_{2} - Force at the pads
$\mathrm{A}_{2 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$p_{2 F / R}$ - Pressure at the caliper F/R

Questions
a) Is $p_{1 F}=p_{2 F}$?
b) Is $p_{1 R}=p_{2 R}$?

$$
p=\frac{F}{A} \quad p_{1}=p_{2}=\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

Brake system

Brake system - parameters

F_{1} - Force by foot of driver
r_{1} - Ratio of balance bar
$\mathrm{A}_{1 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$p_{1 F / R}$ - Pressure in the piston F/R
F_{2} - Force at the pads
$\mathrm{A}_{2 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$\mathrm{p}_{2 \mathrm{~F} / \mathrm{R}}$ - Pressure at the caliper F/R

Brake system

Brake system - parameters

F_{1} - Force by foot of driver
r_{1} - Ratio of balance bar
$\mathrm{A}_{1 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$p_{1 F / R}$ - Pressure in the piston F/R
F_{2} - Force at the pads
$\mathrm{A}_{2 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$\mathrm{p}_{2 \mathrm{~F} / \mathrm{R}}$ - Pressure at the caliper F/R

Questions

a) What else is necessary to know the braking torque?

Brake system

Brake system - parameters

F_{1} - Force by foot of driver
r_{1} - Ratio of balance bar
A ${ }_{1 F / R}$ - Area of piston F/R
$p_{1 F / R}$ - Pressure in the piston F/R
F_{2} - Force at the pads
$\mathrm{A}_{2 \mathrm{~F} / \mathrm{R}}$ - Area of piston F/R
$\mathrm{p}_{2 \mathrm{~F} / \mathrm{R}}$ - Pressure at the caliper F/R

Questions
a) What else is necessary to know the braking torque? Coefficient of friction, radius.

Brake system

Calc example! Design racecar's brake system!

Questions:

1. What is the braking force ($F x, b$) that can appear at the contact patch? $\sim 373,0 \mathrm{~N}$
2. What is the necessary normal force that is required to use this entire braking force? $\sim 438,9 \mathrm{~N}$

Brake system

Brake system

PAGID Friction and Temperature profile provided by AlconKits.com

Brake system

Brake system

Raybestos ${ }^{\oplus}$ Racing Compounds

Bibliography

- https://www.google.com/search?q=balance+bar+bias\&tbm=isch\&ved=2ahUKEwiD_MXK4vz9AhXdxgIHHbb_C6sQ2cCegQIABAA\&oq=balance+bar+bias\&gs_Icp=CgNpbWcQAzoECCMQJzoICAAQBxAeEBM6CAgAEAgQHhATOgcIABCKBRBDOg gIABCABBCxAzoLCAAQgAQQsQMQgwE6BAgAEAM6CggAEloFELEDEEM6BQgAEIAEOgcIABCABBATOggIABAFEB4QEzoGCA AQHhATOgQIABAeOgYIABAFEB5Q9gVYkx1gix5oAXAAeACAAVSIAbIKkgECMTiYAQCgAQGqAQtnd3Mtd2I6LWItZ8ABAQ\&sclie nt=img\&ei=h-QhZMOcEt2Ni-gPtv-v2Ao\&bih=1052\&biw=2133\#imgrc=15ZQ10PybQuouM\&imgdii=yAPeL5iEGhmVsM
- https://www.wikihow.com/Change-a-Brake-Caliper
- https://www.edmunds.com/how-to/how-to-change-your-brake-pads.html
- https://www.mathworks.com/help/sdl/ref/discbrake.html
- https://www.researchgate.net/figure/Brake-torque-model-in-contact-interface-a-top-view-b-front-view fig4 264437590
- https://www.google.com/url?sa=i\&url=https\%3A\%2F\%2Fwww.linkedin.com\%2Fpulse\%2Frace-car-pedal-study-iv\%C3\%A1n-platas\&psig=AOvVaw3QEye-wdMXkYOTgeS-
fOmq\&ust=1709026308173000\&source=images\&cd=vfe\&opi=89978449\&ved=0CBIQjRxqFwoTCPjP6aHZyIQDFQAAAAAdAAAAA BAZ

