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Sensor fusion / data fusion

Enhance data authenticity or availability

• Improve detection, confidence

• Extend spatial and temporal coverage

• Combine field of  view
• US sensors, radars

• Use cheaper devices

• Increase reliability

• Decrease uncertainty

• Fuse different types of  data
• Velocity + acceleration

• Create new type of  data
• Position from velocity and acceleration
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Sensor fusion / data fusion

Difficulties

• Data association

• In multi-object setups

• Measurement-to-track, Track-to-track

• Data alignment

• In multi-sensor setups 

• calibration, coordinate system

• Sensor imperfection

• Sensor diversity

• Noisy environment

• Problems with data

Problems with data

• Probabilistic uncertainty

• Noise: additive,  multiplicative, etc

• Ambiguity

• Interval measurement

• Vagueness

• Natural language (“small”, “large”)

• Incomplete

• Partial information (only upper limit)
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Probabilistic data fusion

• Consider the uncertainty

• Probabilistic model

• Bayesian inference

• Model based

• Stochastic dynamic process

• Noisy measurements

A robot that carries a 
notion of its own 
uncertainty and that 
acts accordingly is 
superior to one that 
does not.
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Uncertainty

• Notion of  uncertainty

• Propagation of  uncertainty

• Uncertainty of  prediction

• Uncertainty of  estimation

• Uncertainty after fusion should be 
lower

• Probabilistic model: random 
variable
• Mean, variance
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Normal distribution

• Is the limit of  the
• Binomial distribution: 𝐵(𝑘; 𝑛, 𝑝) → 𝑁(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))
• Poisson distribution: 𝑃(𝑘; 𝜆) → 𝑁(𝑘; 𝜆, 𝜆)
• Chi-squared distribution: 𝜒2(𝑘) → 𝑁(𝑘, 2𝑘)

• Generally, the sum of  independent, identically distributed random variables 
tends toward a normal distribution

• For a given mean and variance this is the maximum entropy distribution
• It is the least informative distribution

• It minimizes the information that we assume to be there

• Physical systems generally move towards equilibrium, that is maximum entropy state

• It has nice mathematical properties
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Central limit theorem

• https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_hu.html

%% Central limit theorem

% Dice roll

n = 1e4;

R = sum(round(6*rand(n)));

histogram(R)

Tossing a coin n times and getting k heads

https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_hu.html
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Create Gaussian variable 

• Usually we have a random number generator

• We can generate a random number in the interval 0…1

• The standard deviation is 
1

12

• The mean is 0.5

Algorithm

1. Add 12 random numbers (𝜇 = 6, 𝜎 = 1)

2. Subtract 6 (𝜇 = 0, 𝜎 = 1)

3. Multiply by the desired STD

4. Add the desired mean

x = sum(rand(12,1e4));

x = x - 6;

x = x * 3;

x = x + 8;

histogram(x,'normalization',

'pdf')

hold on

t=(-3*sigma:0.1:3*sigma)+mu;

plot(t,normpdf(t,8,3))
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Gaussian vs White noise

• Gaussian noise and white noise are not synonyms

• Gaussian refers the distribution of  the amplitude

• White means that the values are not correlated in time. The intensity is 
the same at all frequencies and the PDF can be any

• A random process can be white and Gaussian

• This is a desired property

• Tractable analytic models

• Can be a good approximation of  real-world situations

• Additive White Gaussian Noise (AWGN)
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Multivariate normal distribution

• Joint and multivariate distributions are 

synonyms

𝑓 𝐱 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑘

=
1

2𝜋 𝑘 det Σ
exp(−

1

2
(𝐱 − μ)𝑇Σ−1(𝐱 − μ))



Bayes’ theorem

Bayesian inference
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Bayes’ theorem

An Essay towards solving a Problem in the Doctrine of Chances (1763)
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Bayes’ theorem – examples

Applications

• COVID19 test

• Drug test

• Diagnosis

• Humans and machines

• Genetics

• Inheritance

• Carrier of  recessive gene
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Bayes’ theorem – examples

Applications

• COVID19 test

• Drug test

• Diagnosis

• Humans and machines

• Genetics

• Inheritance

• Carrier of  recessive gene

Has COVID given
positive test result

Positive test result
given has COVID Has COVID

Positive test result
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Bayes’ theorem – examples

Applications

• COVID19 test

• Drug test

• Diagnosis

• Humans and machines

• Genetics

• Inheritance

• Carrier of  recessive gene

Has COVID given
positive test result

Positive test result
given has COVID Has COVID

Positive test result

True positive + False positive

Initial belief

Measurement
Result
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Bayes’ theorem – examples

Applications

• COVID19 test

• Drug test

• Diagnosis

• Humans and machines

• Genetics

• Inheritance

• Carrier of  recessive gene

Uses drug given
positive test result

Positive test result
given uses drug

Prevalence (and
other factors)

Positive test result

True positive + False positive

Initial belief

Measurement
Result
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Bayes’ theorem – examples

Applications

• COVID19 test

• Drug test

• Diagnosis

• Humans and machines

• Genetics

• Inheritance

• Carrier of  recessive gene

Has cancer given
a symptom

Has symptom given
has cancer

Prevalence (and
other factors)

Positive test result

True positive + False positive

Initial belief

Measurement
Result
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Bayes’ theorem – examples

Applications

• COVID19 test

• Drug test

• Diagnosis

• Humans and machines

• Genetics

• Inheritance

• Carrier of  recessive gene

What we are looking for

Information from
measurement

Our initial belief

Normalizing factor

Probability of the outcome

Prior

Likelihood
Posterior
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Bayes’ theorem – examples

Probability of  the outcome

True positive + False positive

• 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 ¬𝐴 𝑃(¬𝐴)

• Law of  total probability

What we are looking for

Information from
measurement

Our initial belief

Normalizing factor

Probability of the outcome

Prior

Likelihood
Posterior
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Assigning probabilities for events

• Probability is a value in the interval [0,1]
• Event → probability 𝐴 → 𝑃(𝐴)
• Set of  all possible events: Ω 𝑃 Ω = 1

How to assign a value to 𝑷(𝑨)?

• Classical interpretation of  Laplace:

# 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡𝑠

# 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡𝑠
(Principle of  indifference)

• Frequentist interpretation

𝑃 𝐴 = lim
𝑁→∞

# 𝑡𝑟𝑖𝑎𝑙𝑠 𝐴 𝑜𝑐𝑐𝑢𝑟𝑒𝑑

# 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑎𝑙𝑠
(relative frequency)

Ω

 A

𝑃 𝐴 =
𝑎𝑟𝑒𝑎(𝐴)

𝑎𝑟𝑒𝑎(Ω)



Kolmogorov axioms

• Sample space (Ω): set of  all 

possible events

• Events (𝑨, 𝑩, … ): subsets of  Ω, 

can be elementary or complex

• Probability of  an event: 𝑃 𝐸

1. 𝑃 𝐸 ≥ 0 for every event

2. 𝑃 Ω = 1

3. 𝑃 𝑖=1ڂ
∞ 𝐸𝑖 = σ𝑖=1

∞ 𝑃(𝐸𝑖)

How to choose a specific function P 
is not part of  the axioms

Dice Roll

• Sample space (Ω): {1,2,3,4,5,6} or {even, odd}

• Elementary events (ω): {1,2,3,4,5,6}

• Set of  considered events (𝑭): eg.: {∅,1,2,3,4,5,6, 

even, >3, etc.}

• Events (𝑨, 𝑩,… ): {2, even, greater than 3 and odd, 

4&5, etc}

• Probability measure 𝑃: 𝐹→[0,1]: “favorable 

cases/possible cases” (Laplace)

• An event has probability: e.g. 𝑃(𝐴), 𝑃(¬𝐴), 𝑃(𝐴 ∩
𝐵) etc.

• The triplet (Ω, 𝐹, 𝑃) defines a probability space
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Conditional probability

• Conditional probability (definition)

𝑃 𝐴 𝐵 ≔
𝑃 𝐴∩𝐵

𝑃 𝐵
𝑃 𝐴∩𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)

• Independent events

𝑃 𝐴 𝐵 = 𝑃 𝐴 and 𝑃 𝐵 𝐴 = 𝑃 𝐵

𝑃 𝐴∩𝐵 = 𝑃 𝐴 𝑃(𝐵)

• Collectively exhaustive events

ራ

𝑖=1

𝑁

𝐵𝑖 = Ω 𝐵𝑖 ∩ 𝐵𝑗= ∅

Ω

 B1

B2

Bi

B

Ω

 A



Bayes’ theorem

• Law of  total probabilities

𝑃 𝐴 =

𝑖=1

𝑁

𝑃 𝐴∩𝐵𝑖 =

𝑖=1

𝑁

𝑃 𝐴|𝐵𝑖 𝑃(𝐵𝑖)

• Bayes-theorem

𝑷 𝑩𝒌 𝑨 =
𝑷 𝑨 𝑩𝒌 𝑷(𝑩𝒌)

𝑷(𝑨)
=

𝑷 𝑨 𝑩𝒌 𝑷(𝑩𝒌)

σ𝒊=𝟏
𝑵 𝑷 𝑨|𝑩𝒊 𝑷(𝑩𝒊)

Usual terminology

Posterior: 𝑃(𝐵𝑘|𝐴) Likelihood: 𝑃(𝐴|𝐵𝑘)

Prior: 𝑃(𝐵𝑘) Evidence, marginal likelihood: 𝑃(𝐴)

Ω

 B1

B2

Bi

A
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Bayesian inference

Application of  the Bayes’ theorem for hypothesis testing

• We have a prior probability, that hypothesis 𝐻 is true: 𝑃(𝐻)

• We observe an event 𝐸, which is the evidence or observation and 

associate the probability: 𝑃(𝐸)

• The likelihood that 𝐸 happens given 𝐻 is true is: 𝑃(𝐸|𝐻)

• The posterior probability that 𝐻 is true given 𝐸 is

𝑃 𝐻 𝐸 =
𝑃 𝐸|𝐻 𝑃(𝐻)

𝑃(𝐸)
=

𝑃 𝐸|𝐻 𝑃(𝐻)

𝑃 𝐸|𝐻 𝑃 𝐻 + 𝑃 𝐸|¬𝐻 𝑃(¬𝐻)
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Hypothesis test – loaded coin

• Someone is tossing a coin in the next room and tells us the results

• We have two hypotheses

• The coin is loaded and produces < heads > with 70% (𝐿)

• The coin is fair and does 50%− 50% (¬𝐿)

• We give probability P0 𝐿 that the coin is loaded (at the beginning)

• Based on what we hear, how shall we change our belief?

• The probabilities of  the outcomes conditioned on the hypotheses are:

𝑃 < heads > 𝐿 = 0.7 𝑃 < tails > 𝐿 = 0.3

𝑃 < heads > ¬𝐿 = 0.5     𝑃 < tails > ¬𝐿 = 0.5
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Hypothesis test – loaded coin

• Say the first toss gives < heads > which results in:

𝑃1 𝐿 = 𝑃0 𝐿 < heads >

𝑃1 𝐿 =
𝑃0 < heads > 𝐿 𝑃0(𝐿)

𝑃0 < heads > 𝐿 𝑃0(𝐿) + 𝑃0 < heads > ¬𝐿 𝑃0(¬𝐿)

𝑃1 𝐿 =
0.7𝑃0(𝐿)

0.7𝑃0 𝐿 + 0.5(1 − 𝑃0(𝐿))

• If  we would have < tails > instead:

𝑃1 𝐿 =
𝑃0 < tails > 𝐿 𝑃0(𝐿)

𝑃0 < tails > 𝐿 𝑃0(𝐿) + 𝑃0 < tails > ¬𝐿 𝑃0(¬𝐿)

𝑃1 𝐿 =
0.3𝑃0(𝐿)

0.3𝑃0 𝐿 + 0.5(1 − 𝑃0(𝐿))
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Hypothesis test – loaded coin

With a concrete prior belief: 𝑃0 𝐿 = 0.2

• 1. outcome: < heads >:

𝑃1 𝐿 =
0.7 × 0.2

0.7 × 0.2 + 0.5 × (1 − 0.2)
= 0.26

• 1. outcome: < tails >:

𝑃1 𝐿 =
0.3 × 0.2

0.3 × 0.2 + 0.5 × (1 − 0.2)
= 0.13
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Hypothesis test – loaded coin

If  we get two < heads > in a row:

𝑃2 𝐿 = 𝑃1(𝐿| < heads >)

𝑃2 𝐿 =
0.7 × 0.26

0.7 × 0.26 + 0.5 × (1 − 0.26)
= 0.33

• The second evidence also increases our belief

• This is a recursive process where we use the last result as prior

• We can have more than one concurrent hypotheses about a parameter (or a 
variable)

• In fact we can have continuously many hypotheses (from a parameter space or 
a state space)
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Recursive Bayesian estimation

• If  we get more and more measurements we can make a recursive 
estimation

𝑃2 𝐻 𝐸 =
𝑃2 𝐸|𝐻 𝑃2(𝐻)

𝑃2(𝐸)
𝑃1 𝐻 𝐸 =

𝑃1 𝐸|𝐻 𝑃1(𝐻)

𝑃1(𝐸)

• If  there is some kind of  “motion” (which isn’t in the coin toss 
example) we should consider it and change out prior belief  
accordingly (green arrow)
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Bayes’ theorem for continuous problems

• Estimate 𝑥 given 𝑧 at timestep 1

𝑝(𝑥1|𝑧1) =
𝑝(𝑧1|𝑥1) 𝑝(𝑥1)

𝑝(𝑧1)

• At timestep 2 we have 2 measurements and 2 states

𝑝(𝑥1:2|𝑧1:2) =
𝑝(𝑧1:2|𝑥1:2) 𝑝(𝑥1:2)

𝑝(𝑧1:2)

• And so on…  𝑥1:𝑘 and 𝑧1:𝑘 gets bigger at every timestep

𝑝(𝑥1:𝑘|𝑧1:𝑘) =
𝑝(𝑧1:𝑘|𝑥1:𝑘) 𝑝(𝑥1:𝑘)

𝑝(𝑧1:𝑘)

This is the full (or batch) Bayesian estimation problem

• It is generally intractable (computational complexity: 𝑂(𝑘3))
• Usually we can simplify the problem
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Bayesian estimation

Using the measurements up to timestep k:

• Filtering we need the actual state 𝑥𝑘: 𝑝 𝑥𝑘 𝑧1:𝑘
• Prediction we need the next states 𝑥𝑘+𝑛: 𝑝 𝑥𝑘+𝑛 𝑧1:𝑘
• Smoothing we re-estimate the states 𝑥𝑘−𝑛: 𝑝 𝑥𝑘−𝑛 𝑧1:𝑘
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Recursive estimation

• Filtering is generally achieved by a recursive estimation process

• 𝑝 𝑥𝑘 𝑧1:𝑘 =
𝑝(𝑧1:𝑘|𝑥𝑘)𝑝 𝑥𝑘

𝑝 𝑧1:𝑘

• 𝑝(𝑥𝑘|𝑧1:𝑘) =
𝑝(𝑧𝑘|𝑥𝑘) 𝑝(𝑥𝑘|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
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Hidden Markov model (HMM)

• In the context of  state estimation (robotics) the value to be 
estimated is the state (or state vector in general) of  an object or 
an ensemble of  objects

• The state in unknown to us (hidden) and possibly evolves in time: 
the system has dynamics

• We can observe the system and obtain a limited amount of  
information, for example

• Partial observation of  the state

• Noisy measurements
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Markov assumptions

• The current state depends only on the previous state

𝑝(𝐱𝑘 𝐱𝑘−1, 𝐱𝑘−2, … , 𝐱0 = 𝑝(𝐱𝑘|𝐱𝑘−1)

• The measurement depends only on the current state

𝑝(𝐳𝑘 𝐱𝑘 , 𝐱𝑘−1, … , 𝐱0 = 𝑝(𝐳𝑘|𝐱𝑘)
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Modelling uncertainties

• Additive noise acting on the motion and sensor model

x𝑘+1|𝑘 = 𝑓𝑘 x𝑘 +𝑤𝑘

z𝑘 = ℎ𝑘 x𝑘 + 𝑣𝑘
random deterministic random

• How do we create probabilities from these random variables?

• Since x and z are usually continuous variables, the probabilities of  
taking specific values are zero.

• However, x and z residing in some region 𝑆 and 𝑇 have nonzero 
probabilities

𝑃(x𝑘+1|𝑘 ∈ 𝑆|x𝑘) 𝑃(z𝑘 ∈ 𝑇|x𝑘)
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Modelling uncertainties

• The probability mass is given by integrating the probability density over a region

𝑃 x𝑘+1|𝑘 ∈ 𝑆 x𝑘 = න

𝑆

𝑝 x x𝑘 dx 𝑃 z𝑘 ∈ 𝑇 x𝑘 = න

𝑇

𝑝 z x𝑘 dz

• 𝑝 x x𝑘 is the probability density function associated to the uncertain motion model

• 𝑝 z x𝑘 is the probability density function associated to the uncertain sensor model

• If  the additive noise is zero mean Gaussian 

𝑝 x x𝑘 = 𝒩(x; 𝑓𝑘 x𝑘 , 𝜎𝑤
2)

• Similarly for the sensor model

𝑝 z x𝑘 = 𝒩(z; ℎ𝑘 x𝑘 , 𝜎𝑣
2)
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Recursive Bayesian estimation (in discrete time)

• Estimate the state vector at timestep 𝑘 using measurements up to 𝑘:

𝑝 x𝑘 z1:𝑘 =
𝑝 z𝑘|x𝑘 𝑝(x𝑘|z1:𝑘−1)

𝑝(z𝑘|z1:𝑘−1)

• The denominator is constant and can be expressed as

𝑝 z𝑘|z𝑘−1 = න𝑝 z𝑘|xk 𝑝 x𝑘|z𝑘−1 dx𝑘

• The prior, with the help of  a model of  the system is obtained from the pervious 
posterior through the time-prediction integral (Chapman-Kolmogorov integral):

𝑝 x𝑘|z1:𝑘−1 = න𝑝 x𝑘|xk−1 𝑝 x𝑘−1|z1:k−1 dx𝑘−1

motion model  previous posterior

This was the
Bayes-theorem

𝑃 𝐵𝑘 𝐴 =
𝑃 𝐴 𝐵𝑘 𝑃(𝐵𝑘)

σ𝑖=1
𝑁 𝑃 𝐴|𝐵𝑖 𝑃(𝐵𝑖)
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Terminology in estimation

• Statistic: a function of  the data

• Estimator: a function of  the data that intends to describe some 
property of  the underlying distribution

• A statistic is not good or bad( or biased or unbiased). It is just a function

• An estimator can be good (unbiased, minimum variance etc.). E.g.: the sample 
mean is an unbiased estimator of  the expected value

• Filtering: estimate 𝑥𝑡 based on measurements 𝑧1:𝑡
• Prediction: estimate 𝑥𝑡+𝜏 based on measurements 𝑧1:𝑡
• Smoothing: estimate 𝑥𝑡−𝜏 based on measurements 𝑧1:𝑡
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Accuracy, precision

The quality of  a sensor can be described 
by its precision and accuracy

• Accuracy

• Measures the systematic error (bias)

• Related to the mean of  the measurement

• Precision

• Measure the random error (variability)

• Related to the variance (standard deviation) 
of  the measurement
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System model

Approach

• Differential equations

• Continuous time

• Discrete time

• Probabilistic description

• Motion model

• Measurement model

x𝑘+1 = 𝑓𝑘 x𝑘 +𝑤𝑘

z𝑘 = ℎ𝑘 x𝑘 + 𝑣𝑘
random deterministic random

x𝑘+1 = 𝐹𝑘x𝑘 + 𝐺𝑘𝑤𝑘

z𝑘 = 𝐻𝑘x𝑘 + 𝑣𝑘

ሶ𝒙(𝑡) = 𝑓(𝑡, 𝒙,𝒘)
𝒛(𝑡) = ℎ(𝑡, 𝒙, 𝒗)

ሶ𝒙 𝑡 = 𝑓 𝑡, 𝒙 + 𝜞𝒘
𝒛 𝑡 = ℎ 𝑡, 𝒙 + 𝒗
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Propagating uncertainties

• Uncertain initial position

• Uncertain motion

• Uncertain measurement

• The motion model inserts additional noise
• The uncertainty increases

• The measurement model inserts additional noise and 
projections
• Partial observation + uncertainty increase

Motion

Measurement

𝑥 → 𝑓(𝑥, 𝑤)

𝑥 → ℎ(𝑥, 𝑣)
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Propagating uncertainties

• Adding two random variables: 𝑍 = 𝑋 ± 𝑌

• 𝜎𝑍
2 = 𝜎𝑋

2 + 𝜎𝑌
2 ± 2𝜎𝐴𝐵

• 𝜎𝑍
2 = 𝜎𝑋

2 + 𝜎𝑌
2 if  𝑋 and 𝑌 are independent

• Affine transformation of  random vector: 𝑍 = 𝐴𝑋 + 𝑏

• 𝑋 = x1, x2, … , 𝑥𝑛

• 𝑏 is a constant vector, 𝐴 is a constant matrix

• E[𝑍] = E[𝐴𝑋 + 𝑏] = 𝐴E[𝑋] + 𝑏 = 𝐴 ത𝑋 + 𝑏

• cov 𝑍 = 𝐴 cov 𝑋 𝐴⊤


