Automotive environment sensors BMEKOKAM708

Lecture 02
Olivér Törő
2023

Sensor fusion / data fusion

Enhance data authenticity or availability

- Improve detection, confidence
- Extend spatial and temporal coverage
- Combine field of view
- US sensors, radars
- Use cheaper devices
- Increase reliability
- Decrease uncertainty
- Fuse different types of data
- Velocity + acceleration
- Create new type of data
- Position from velocity and acceleration

Sensor fusion / data fusion

Difficulties

- Data association
- In multi-object setups
- Measurement-to-track, Track-to-track
- Data alignment
- In multi-sensor setups
- calibration, coordinate system
- Sensor imperfection
- Sensor diversity
- Noisy environment
- Problems with data

Problems with data

- Probabilistic uncertainty
- Noise: additive, multiplicative, etc
- Ambiguity
- Interval measurement
- Vagueness
- Natural language ("small", "large")
- Incomplete
- Partial information (only upper limit)

Probabilistic data fusion

- Consider the uncertainty
- Probabilistic model
- Bayesian inference
- Model based
- Stochastic dynamic process
- Noisy measurements

A robot that carries a notion of its own uncertainty and that acts accordingly is superior to one that does not.

Lemma 2.
Uncertainty is everywhere.

Theorem 2.

Corollary 2.
Embrace it!

Estimation with
Applications to
Tracking and
Navigation
Theory Algorithms and Software
\qquad

YAAKOV BAR-SHALOM
thiagaungam kirubaraian

Uncertainty

- Notion of uncertainty
- Propagation of uncertainty

$$
f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\pi-\mu}{\sigma}\right)^{2}}
$$

- Uncertainty of prediction
- Uncertainty of estimation
- Uncertainty after fusion should be lower
- Probabilistic model: random variable

68-95-99.7 Rule

- Mean, variance

Normal distribution

- Is the limit of the
- Binomial distribution: $B(k ; n, p) \rightarrow N(k ; n p, n p(1-p))$
- Poisson distribution: $P(k ; \lambda) \rightarrow N(k ; \lambda, \lambda)$
- Chi-squared distribution: $\chi^{2}(k) \rightarrow N(k, 2 k)$

- Generally, the sum of independent, identically distributed random variables tends toward a normal distribution
- For a given mean and variance this is the maximum entropy distribution
- It is the least informative distribution
- It minimizes the information that we assume to be there
- Physical systems generally move towards equilibrium, that is maximum entropy state
- It has nice mathematical properties

Central limit theorem

Budapest University of Technology and Economics

```
%% Central limit theorem
% Dice roll
n = 1e4;
R = sum(round(6*rand(n)));
histogram(R)
```


Tossing a coin n times and getting k heads

[^0]
Create Gaussian variable

- Usually we have a random number generator
- We can generate a random number in the interval $0 \ldots 1$
- The standard deviation is $\frac{1}{\sqrt{12}}$
- The mean is 0.5

Algorithm

1. Add 12 random numbers $(\mu=6, \sigma=1)$
2. Subtract $6(\mu=0, \sigma=1)$
3. Multiply by the desired STD
4. Add the desired mean
```
x = sum(rand(12,1e4));
x = x - 6;
x = x * 3;
x = x + 8;
histogram(x,'normalization',
'pdf')
hold on
t=(-3*sigma:0.1:3*sigma) +mu;
plot(t, normpdf(t, 8, 3))
```


Gaussian vs White noise

- Gaussian noise and white noise are not synonyms
- Gaussian refers the distribution of the amplitude
- White means that the values are not correlated in time. The intensity is the same at all frequencies and the PDF can be any
- A random process can be white and Gaussian
- This is a desired property
- Tractable analytic models
- Can be a good approximation of real-world situations
- Additive White Gaussian Noise (AWGN)

Multivariate normal distribution

- Joint and multivariate distributions are synonyms

$$
\begin{aligned}
& f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
& =\frac{1}{\sqrt{(2 \pi)^{k} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
\end{aligned}
$$

Multwaraite Normal Distribution

Bayes' theorem Bayesian inference

Bayes' theorem

An Essay towards solving a Problem in the Doctrine of Chances (1763)

Bayes' theorem - examples

Applications

- COVID19 test
- Drug test
- Diagnosis
- Humans and machines

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Genetics
- Inheritance
- Carrier of recessive gene

Bayes' theorem - examples

Applications

- COVID19 test
- Drug test
- Diagnosis
- Humans and machines
- Genetics
- Inheritance

- Carrier of recessive gene

Bayes' theorem - examples

Applications
 - COVID19 test

- Drug test
- Diagnosis
- Humans and machines
- Genetics
- Inheritance
- Carrier of recessive gene

Measurement

Has COVID given positive test result

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Positive test result
True positive + False positive

Bayes' theorem - examples

Applications

- COVID19 test
- Drug test
- Diagnosis
- Humans and machines
- Genetics
- Inheritance
- Carrier of recessive gene

Bayes' theorem - examples

Applications

- COVID19 test
- Drug test
- Diagnosis
- Humans and machines
- Genetics
- Inheritance
- Carrier of recessive gene

Measurement

Has cancer given a symptom

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Has symptom given
Initial belief
has cancer Prevalence (and other factors)

Bayes' theorem - examples

Applications

- COVID19 test
- Drug test
- Diagnosis
- Humans and machines
- Genetics
- Inheritance
- Carrier of recessive gene

Likelihood

Information from measurement

Prior

Our initial belief
$P(B \mid A) P(A)$
P(B)

Normalizing factor
Probability of the outcome

Bayes' theorem - examples

Probability of the outcome
True positive + False positive

- $P(B)=P(B \mid A) P(A)+P(B \mid \neg A) P(\neg A)$
- Law of total probability

Likelihood

Assigning probabilities for events

- Probability is a value in the interval $[0,1]$
- Event \rightarrow probability

$$
\begin{aligned}
& A \rightarrow P(A) \\
& P(\Omega)=1
\end{aligned}
$$

- Set of all possible events: Ω

How to assign a value to $P(A)$?

- Classical interpretation of Laplace:

$$
\frac{\# \text { favorable events }}{\# \text { all possible events }} \text { (Principle of indifference) }
$$

- Frequentist interpretation

$$
P(A)=\frac{\operatorname{area}(A)}{\operatorname{area}(\Omega)}
$$

$$
P(A)=\lim _{N \rightarrow \infty} \frac{\# \text { trials } A \text { occured }}{\# \text { total trials }} \text { (relative frequency) }
$$

Kolmogorov axioms

- Sample space ($\boldsymbol{\Omega}$): set of all possible events
- Events $(\boldsymbol{A}, \boldsymbol{B}, \ldots)$: subsets of $\boldsymbol{\Omega}$, can be elementary or complex
- Probability of an event: $P(E)$

1. $P(E) \geq 0$ for every event
2. $P(\boldsymbol{\Omega})=1$
3. $P\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$

How to choose a specific function P is not part of the axioms

Dice Roll

- Sample space ($\boldsymbol{\Omega}$): $\{1,2,3,4,5,6\}$ or $\{$ even, odd $\}$
- Elementary events (ω): $\{1,2,3,4,5,6\}$
- Set of considered events (F): eg.: $\{\varnothing, 1,2,3,4,5,6$, even, >3, etc.\}
- Events $(\boldsymbol{A}, \boldsymbol{B}, \ldots):\{2$, even, greater than 3 and odd, $4 \& 5$, etc $\}$
- Probability measure $P: F \rightarrow[0,1]$: "favorable cases/possible cases" (Laplace)
- An event has probability: e.g. $P(A), P(\neg A), P(A \cap$ B) etc.
- The triplet (Ω, F, P) defines a probability space

Conditional probability

- Conditional probability (definition)

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)} \quad P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

- Independent events

$$
\begin{gathered}
P(A \mid B)=P(A) \text { and } P(B \mid A)=P(B) \\
P(A \cap B)=P(A) P(B)
\end{gathered}
$$

- Collectively exhaustive events

$$
\bigcup_{i=1}^{N} B_{i}=\Omega \quad B_{i} \cap B_{j}=\emptyset
$$

Bayes' theorem

- Law of total probabilities

$$
P(A)=\sum_{i=1}^{N} P\left(A \cap B_{i}\right)=\sum_{i=1}^{N} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

- Bayes-theorem

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{P(A)}=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{\sum_{i=1}^{N} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

Usual terminology

Posterior: $P\left(B_{k} \mid A\right)$
Prior: $P\left(B_{k}\right)$

Likelihood: $P\left(A \mid B_{k}\right)$
Evidence, marginal likelihood: $P(A)$

Bayesian inference

Application of the Bayes' theorem for hypothesis testing

- We have a prior probability, that hypothesis H is true: $P(H)$
- We observe an event E, which is the evidence or observation and associate the probability: $P(E)$
- The likelihood that E happens given H is true is: $P(E \mid H)$
- The posterior probability that H is true given E is

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}=\frac{P(E \mid H) P(H)}{P(E \mid H) P(H)+P(E \mid \neg H) P(\neg H)}
$$

Hypothesis test - loaded coin

- Someone is tossing a coin in the next room and tells us the results
- We have two hypotheses
- The coin is loaded and produces $<$ heads $>$ with $70 \%(L)$
- The coin is fair and does $50 \%-50 \%(\neg L)$
- We give probability $\mathrm{P}_{0}(L)$ that the coin is loaded (at the beginning)
- Based on what we hear, how shall we change our belief?
- The probabilities of the outcomes conditioned on the hypotheses are:

$$
\begin{array}{rl}
P(<\text { heads }>\mid L)=0.7 & P(<\text { tails }>\mid L)=0.3 \\
P(<\text { heads }>\mid \neg L)=0.5 & P(<\text { tails }>\mid \neg L)=0.5
\end{array}
$$

Hypothesis test - loaded coin

- Say the first toss gives $<$ heads $>$ which results in:

$$
\begin{gathered}
P_{1}(L)=P_{0}(L \mid<\text { heads }>) \\
P_{1}(L)=\frac{P_{0}(<\text { heads }>\mid L) P_{0}(L)}{P_{0}(<\text { heads }>\mid L) P_{0}(L)+P_{0}(<\text { heads }>\mid \neg L) P_{0}(\neg L)} \\
P_{1}(L)=\frac{0.7 P_{0}(L)}{0.7 P_{0}(L)+0.5\left(1-P_{0}(L)\right)}
\end{gathered}
$$

- If we would have $<$ tails $>$ instead:

$$
\begin{gathered}
P_{1}(L)=\frac{P_{0}(<\text { tails }>\mid L) P_{0}(L)}{P_{0}(<\text { tails }>\mid L) P_{0}(L)+P_{0}(<\text { tails }>\mid \neg L) P_{0}(\neg L)} \\
P_{1}(L)=\frac{0.3 P_{0}(L)}{0.3 P_{0}(L)+0.5\left(1-P_{0}(L)\right)}
\end{gathered}
$$

Hypothesis test - loaded coin

With a concrete prior belief: $P_{0}(L)=0.2$

- 1. outcome: < heads $>$:

$$
P_{1}(L)=\frac{0.7 \times 0.2}{0.7 \times 0.2+0.5 \times(1-0.2)}=0.26
$$

- 1. outcome: < tails $>$:

$$
P_{1}(L)=\frac{0.3 \times 0.2}{0.3 \times 0.2+0.5 \times(1-0.2)}=0.13
$$

Hypothesis test - loaded coin

If we get two $<$ heads $>$ in a row:

$$
\begin{gathered}
P_{2}(L)=P_{1}(L \mid<\text { heads }>) \\
P_{2}(L)=\frac{0.7 \times 0.26}{0.7 \times 0.26+0.5 \times(1-0.26)}=0.33
\end{gathered}
$$

- The second evidence also increases our belief
- This is a recursive process where we use the last result as prior
- We can have more than one concurrent hypotheses about a parameter (or a variable)
- In fact we can have continuously many hypotheses (from a parameter space or a state space)

Recursive Bayesian estimation

- If we get more and more measurements we can make a recursive estimation

$$
P_{2}(H \mid E)=\frac{P_{2}(E \mid H) P_{2}(H)}{P_{2}(E)} \backsim P_{1}(H \mid E)=\frac{P_{1}(E \mid H) P_{1}(H)}{P_{1}(E)}
$$

- If there is some kind of "motion" (which isn't in the coin toss example) we should consider it and change out prior belief accordingly (green arrow)

Bayes' theorem for continuous problems

- Estimate X given Z at timestep 1

$$
p\left(x_{1} \mid z_{1}\right)=\frac{p\left(z_{1} \mid x_{1}\right) p\left(x_{1}\right)}{p\left(z_{1}\right)}
$$

- At timestep 2 we have 2 measurements and 2 states

$$
p\left(x_{1: 2} \mid z_{1: 2}\right)=\frac{p\left(z_{1: 2} \mid x_{1: 2}\right) p\left(x_{1: 2}\right)}{p\left(z_{1: 2}\right)}
$$

- And so on... $x_{1: k}$ and $z_{1: k}$ gets bigger at every timestep

$$
p\left(x_{1: k} \mid z_{1: k}\right)=\frac{p\left(z_{1: k} \mid x_{1: k}\right) p\left(x_{1: k}\right)}{p\left(z_{1: k}\right)}
$$

This is the full (or batch) Bayesian estimation problem

- It is generally intractable (computational complexity: $O\left(k^{3}\right)$)
- Usually we can simplify the problem

Bayesian estimation

Using the measurements up to timestep k :

- Filtering we need the actual state x_{k} :
- Prediction we need the next states x_{k+n} :
- Smoothing we re-estimate the states x_{k-n} :

$$
\begin{aligned}
& p\left(x_{k} \mid z_{1: k}\right) \\
& p\left(x_{k+n} \mid z_{1: k}\right) \\
& p\left(x_{k-n} \mid z_{1: k}\right)
\end{aligned}
$$

Recursive estimation

- Filtering is generally achieved by a recursive estimation process
- $p\left(x_{k} \mid z_{1: k}\right)=\frac{p\left(z_{1: k} \mid x_{k}\right) p\left(x_{k}\right)}{p\left(z_{1: k}\right)}$

- $p\left(x_{k} \mid z_{1: k}\right)=\frac{p\left(z_{k} \mid x_{k}\right) p\left(x_{k} \mid z_{1: k-1}\right)}{p\left(z_{k} \mid z_{1: k-1}\right)}$

Hidden Markov model (HMM)

- In the context of state estimation (robotics) the value to be estimated is the state (or state vector in general) of an object or an ensemble of objects
- The state in unknown to us (hidden) and possibly evolves in time: the system has dynamics
- We can observe the system and obtain a limited amount of information, for example
- Partial observation of the state
- Noisy measurements

Markov assumptions

- The current state depends only on the previous state

$$
p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{x}_{k-2}, \ldots, \mathbf{x}_{0}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)
$$

- The measurement depends only on the current state

$$
p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}, \mathbf{x}_{k-1}, \ldots, \mathbf{x}_{0}\right)=p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right)
$$

Modelling uncertainties

- Additive noise acting on the motion and sensor model

$$
\begin{gathered}
\mathrm{x}_{k+1 \mid k}=f_{k}\left(\mathrm{x}_{k}\right)+w_{k} \\
\mathrm{z}_{k}=h_{k}\left(\mathrm{x}_{k}\right)+v_{k} \\
\text { random deterministic random }
\end{gathered}
$$

- How do we create probabilities from these random variables?
- Since x and z are usually continuous variables, the probabilities of taking specific values are zero.
- However, x and z residing in some region S and T have nonzero probabilities

$$
P\left(\mathrm{x}_{k+1 \mid k} \in S \mid \mathrm{x}_{k}\right) \quad P\left(\mathrm{z}_{k} \in T \mid \mathrm{x}_{k}\right)
$$

Modelling uncertainties

- The probability mass is given by integrating the probability density over a region

$$
P\left(\mathrm{x}_{k+1 \mid k} \in S \mid \mathrm{x}_{k}\right)=\int_{S} p\left(\mathrm{x} \mid \mathrm{x}_{k}\right) \mathrm{dx} \quad P\left(\mathrm{z}_{k} \in T \mid \mathrm{x}_{k}\right)=\int_{T} p\left(\mathrm{z} \mid \mathrm{x}_{k}\right) \mathrm{dz}
$$

- $p\left(\mathrm{x} \mid \mathrm{x}_{k}\right)$ is the probability density function associated to the uncertain motion model
- $p\left(\mathrm{z} \mid \mathrm{x}_{k}\right)$ is the probability density function associated to the uncertain sensor model
- If the additive noise is zero mean Gaussian

$$
p\left(\mathrm{x} \mid \mathrm{x}_{k}\right)=\mathcal{N}\left(\mathrm{x} ; f_{k}\left(\mathrm{x}_{k}\right), \sigma_{w}^{2}\right)
$$

- Similarly for the sensor model

$$
p\left(\mathrm{z} \mid \mathrm{x}_{k}\right)=\mathcal{N}\left(\mathrm{z} ; h_{k}\left(\mathrm{x}_{k}\right), \sigma_{v}^{2}\right)
$$

Recursive Bayesian estimation (in discrete time)

- Estimate the state vector at timestep k using measurements up to k :

$$
p\left(\mathrm{x}_{k} \mid \mathrm{z}_{1: k}\right)=\frac{p\left(\mathrm{z}_{k} \mid \mathrm{x}_{k}\right) p\left(\mathrm{x}_{k} \mid \mathrm{z}_{1: k-1}\right)}{p\left(\mathrm{z}_{k} \mid \mathrm{z}_{1: k-1}\right)}
$$

- The denominator is constant and can be expressed as

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{\sum_{i=1}^{N} P\left(A \mid B_{i}\right) P\left(B_{i}\right)} \quad \begin{aligned}
& \text { This was the } \\
& \text { Bayes-theorem }
\end{aligned}
$$

$$
p\left(\mathrm{z}_{k} \mid \mathrm{z}_{k-1}\right)=\int p\left(\mathrm{z}_{k} \mid \mathrm{x}_{\mathrm{k}}\right) p\left(\mathrm{x}_{k} \mid \mathrm{z}_{k-1}\right) \mathrm{dx}_{k}
$$

- The prior, with the help of a model of the system is obtained from the pervious posterior through the time-prediction integral (Chapman-Kolmogorov integral):

$$
p\left(\mathrm{x}_{k} \mid \mathrm{z}_{1: k-1}\right)=\int p\left(\mathrm{x}_{k} \mid \mathrm{x}_{\mathrm{k}-1}\right) p\left(\mathrm{x}_{k-1} \mid \mathrm{z}_{1: \mathrm{k}-1}\right) \mathrm{d}_{k-1}
$$

motion model previous posterior

Terminology in estimation

- Statistic: a function of the data
- Estimator: a function of the data that intends to describe some property of the underlying distribution
- A statistic is not good or bad(or biased or unbiased). It is just a function
- An estimator can be good (unbiased, minimum variance etc.). E.g.: the sample mean is an unbiased estimator of the expected value
- Filtering: estimate x_{t} based on measurements $z_{1: t}$
- Prediction: estimate $x_{t+\tau}$ based on measurements $z_{1: t}$
- Smoothing: estimate $x_{t-\tau}$ based on measurements $z_{1: t}$

Accuracy, precision

The quality of a sensor can be described by its precision and accuracy

- Accuracy
- Measures the systematic error (bias)
- Related to the mean of the measurement

- Precision
- Measure the random error (variability)
- Related to the variance (standard deviation) of the measurement

System model

Approach

- Differential equations
- Continuous time
- Discrete time
- Probabilistic description
- Motion model
- Measurement model

$$
\begin{array}{ccc}
\dot{\boldsymbol{x}}(t)=f(t, \boldsymbol{x}, w) & \dot{\boldsymbol{x}}(t)=f(t, \boldsymbol{x})+\boldsymbol{\Gamma} w \\
\boldsymbol{z}(t)=h(t, \boldsymbol{x}, v) & \mathbf{z}(t)=h(t, \boldsymbol{x})+\boldsymbol{v}
\end{array}
$$

$$
\begin{gathered}
\mathrm{x}_{k+1}=f_{k}\left(\mathrm{x}_{k}\right)+w_{k} \\
\mathrm{z}_{k}=h_{k}\left(\mathrm{x}_{k}\right)+v_{k}
\end{gathered}
$$

random deterministic random

$$
\begin{aligned}
\mathrm{x}_{k+1} & =F_{k} \mathrm{x}_{k}+G_{k} w_{k} \\
\mathrm{z}_{k} & =H_{k} \mathrm{x}_{k}+v_{k}
\end{aligned}
$$

Propagating uncertainties

- Uncertain initial position
- Uncertain motion
- Uncertain measurement

- The motion model inserts additional noise
- The uncertainty increases
- The measurement model inserts additional noise and projections
- Partial observation + uncertainty increase

Propagating uncertainties

- Adding two random variables: $Z=X \pm Y$
- $\sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2} \pm 2 \sigma_{A B}$
- $\sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$ if X and Y are independent
- Affine transformation of random vector: $Z=A X+b$
- $X=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, x_{n}\right]$
- b is a constant vector, A is a constant matrix
- $\mathrm{E}[Z]=\mathrm{E}[A X+b]=A \mathrm{E}[X]+b=A \bar{X}+b$
- $\operatorname{cov}(Z)=A \operatorname{cov}(X) A^{\top}$

[^0]: - https:/ /phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability hu.html

