Department of Automotive Technologies – Vehicle Mechanics Fundamentals

Gábor Sipos

Lecture 2

02. 19. 2021.

Basic informations

Week nr.	Date	Lecture (Monday)		Lab (date+1;Tuesday)		
1	12th Feb	1	General information, Tyre, Driving force	1	Lab	
2	19th Feb	2	Longitudinal and lateral behaviour			
3	26th Feb	3	Concepts and over/understeer	2	Lab	
4	4th Mar	4	Weight transfer			
5	11th Mar	5	Bicycle model	3	Lab	
6	18th Mar	T1	Midterm exam I. ONLINE			
7	25th Mar	6	Braking and brakes ONLINE	4	Lab ONLINE	
8	1st Apr	-	Break			
9	8th Apr	7	Systems of the vehicle	T1 R	Exam 1 - subsequent	
10	15th Apr	8	Quarter vehicle model ONLINE			
11	22th Apr		Break		Break	
12	29th Apr	T2	Midterm exam II. ONLINE			
13	6th May	9	Tyre management	T2 R	Exam 2 - subsequent	
14	13th May	10	Racecar engineering			

Note

To prepare for exam/tests presentations will be uploaded to Moodle, but the some of the slides aren't – therefore to have the full picture lectures shall be attanded.

Brush model

Brush model

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

Brush model

Effect of factors to longitudinal force - SR

effect of different normal force while the friction coefficient is permanent

effect of different friction coefficient while normal force is unchanged

Effect of factors to longitudinal force - SR

effect of different normal force while the friction coefficient is permanent

effect of different friction coefficient while normal force is unchanged

Question: if the more weight effect is as advantageous as it seems here, why don't we start building tanks?

Newton's second law

BME

AUTOMOTIVE TECHNOLOGIES

Keep low as possible

Linear characteristics:

$$a = \frac{F_x}{m} = \frac{F_z \cdot \mu_x}{m} = \frac{m \cdot g \cdot \mu_x}{m} = g \cdot \mu_x$$

Linear characteristics:

$$a = \frac{F_x}{m} = \frac{F_z \cdot \mu_x}{m} = \frac{m \cdot g \cdot \mu_x}{m} = g \cdot \mu_x$$

Degressive characteristics:

$$a = \frac{F_x}{m} = \frac{F_z \cdot \mu_x - F_z^2 \cdot \mu_{x,2}}{m}$$

Tyre characteristics is degressive!

The more vehicle weight results less max. acceleration!

Friction coefficient μ_x

Source: Zomotor Ádám: Gépjármű menetdinamika, 2003

value of μ_x in F1?

Friction coefficient μ_x

value of μ_x in F1?

1.5-1.7

Friction coefficient μ_x

Quelle: Wallentowitz 1997

Tread depth

TYRE SAFETY MONTH

Tyre wear affects vehicle performance and safety. The deeper the groove, the more grip and traction your tyre will have.

Make sure you regularly check the tread depth of your tyres and replace them when they are worn.

Day in the office – for tires

Lateral dynamics - steady state condition

Lateral dynamics - steady state condition

Lateral dynamics - steady state condition

Tyre forces, slip angle

$$\alpha$$
 = SA=slip angle

Slip angle definition

BME

DEPARTMENT OF AUTOMOTIVE TECHNOLOGIES

The angle between actual tyre velocity vector and the tyre midplane is the slip angle.

Slip angle video

by increasing lateral force -> SA will be increasing

by increasing SA -> lateral force will be increasing

Brush model for lateral behaviour

The deformation of one bristle.

Source: C. Woernle

Correlation of a tyre lateral force – SA

Lateral force

What could the colours mean?

- Fz=200 - Fz=400 - Fz=600 - Fz=800 - Fz=1000 - Fz=1200 - Fz=1400 - Fz=1600

Friction coefficient µ_v

Friction coefficient definitions

$$\mu_{\rm x} = \frac{F_{\rm x}}{F_{\rm z}}$$
$$\mu_{\rm y} = \frac{F_{\rm y}}{F_{\rm z}}$$

Different Friction Coefficient along Lateral and Longitudinal Axis

Kamm circle

Circle of friction

$$\mu_{max}F_z \ge \sqrt{F_x^2 + F_y^2}$$

Circle of friction

- weight of the car
- lateral G
- longitudinal G
- vertical aero
- longitudinal aero
- lateral aero

Tyre moments

- Overturning moment M_x
 Rolling resistance M_y
 Aligning torque M_z

• Tyre forces and moments are function of tyre compound and structure, ground and ...

- slip angle
- slip ratio
- vertical load
- inclination angle
- speed

- pressure
- temperature
- rim design
- tyre wear...

Source of yaw moment

• F_x , F_y and M_z

Lateral force and cornering stiffness

Lateral force and cornering stiffness

Tyre: 175 HR 14 pressue: 2.3 bar cornering stiffness: $C_{\alpha} = 41586$ N/rad

The same tyre has different behaviour on different vehicles, therefore the value of C_{α} will be different as well.

Lateral force and cornering stiffness

$$\mathbf{m} \cdot \mathbf{a}_{\mathbf{y}} = \mathbf{F}_{\mathbf{y},\mathbf{F}}(\alpha) + \mathbf{F}_{\mathbf{y},\mathbf{R}}(\alpha)$$

$$\alpha = \alpha(\nu, \omega, \dots)$$

- calculation is easier reason to linearize
- the value of slip angle in that range where we use tyre is low, so we are allowed to linearize

Test example

Tyre test bench measurement data can be seen on diagram.

a) What value is the cornering stiffness?

b) Draw an approximately correct graph with the same tyre as it is marked in wet conditions! The nature of the curve should be correct!

Cornering stiffness distribution

Nissan Deltawing racecar

- Cornering stiffness scales roughly linearly with tyre width
- Guessing WD of a particular car if you look at the relative tyre width front to rear
- Good example: Deltawing sportscar
 - 4 inch wide front tyres
 - If far enough from CoG, reasonable yaw moment if can be generated

Self aligning torque

Bibliography

- <u>https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.wired.com%2F2008%2F05%2Fff-formulaone%2F&psig=AOvVaw1Jpc66dH0FE0zK_Le6ev-D&ust=1612202433180000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNDU7Z_gxu4CFQAAAAAAAAAAAAAAAAA
 <u>https://www.google.com/url?sa=i&url=https%3A%2F%2Fthecuriousastronomer.wordpress.com%2Ftag%2Faagular-</u>
 </u>
- https://www.google.com/imgres?imgurl=https%3A%2F%2Fi0.wp.com%2Fotrwheel.com%2Fwpcontent%2Fuploads%2F2016%2F08%2FradialvsbiasplyFINAL.jpg%3Fresize%3D630%252C301&imgrefurl=https%3A%2F%2Fotrw heel.com%2Fotr-blog%2Fradial-vs-bias-needknow%2F&tbnid=y0Ea_MrsrdG3gM&vet=12ahUKEwi4sPLjvM7uAhUjqnEKHTx0AewQMygFegUIARCiAQ..i&docid=0Oz8itZjkydoIM &w=630&h=301&q=tyre%20%20bias%20ply%20radial&ved=2ahUKEwi4sPLjvM7uAhUjqnEKHTx0AewQMygFegUIARCiAQ

Thank you for your attention!

