If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

A practical manual for Vissim-COM
programming in Matlab and Python

6" edition for Vissim version 2023

Tamas Tettamanti, Marton Tamas Horvath

Budapest University of Technology and Economics
Dept. for Control of Transportation and Vehicle Systems
www.traffic.bme.hu

2023

https://doi.org/10.3311/pp.ci.2012-1.05
http://www.traffic.bme.hu/

1 Vissim traffic simulation via COM interface programming

1.1 The purpose of Vissim-COM programming

Vissim is a microscopic road traffic simulator based on the individual behavior of vehicles.
The goal of the microscopic modeling approach is the accurate description of the traffic
dynamics. Thus, the simulated traffic network may be analyzed in detail. The simulator uses
the so-called psycho-physical driver behavior model developed originally by Wiedemann
(1974). Vissim is widely used for diverse problems by traffic engineers in practice as well
as by researchers for developments related to road traffic. Vissim offers a user friendly
graphical interface (GUI) through of which one can design the geometry of any type of road
networks and set up simulations in a simple way. However, for several problems the GUI is
not satisfying. This is the case, for example, when the user aims to access and manipulate
Vissim objects during the simulation dynamically. For this end, an additional interface is
offered based on the COM which is a technology to enable interprocess communication
between software (Box, 1998). The Vissim-COM interface defines a hierarchical model in
which the functions and parameters of the simulator originally provided by the GUI can be
manipulated by programming. It can be programmed in any type of languages which is able
to handle COM objects (e.g. C++, Visual Basic, Java, Python, etc.). Through Vissim-COM
the user is able to manipulate the attributes of most of the internal objects dynamically.

1.2 The basic steps of Vissim-COM programming
The following steps formulate a general synthesis for the realization of any adaptive control
logic through Vissim-COM interface:

1. One generates the overall traffic network through the Vissim GUI (geometry, signal
heads, detectors, vehicle inputs, etc.).

2. After choosing a programming language which allows COM interface programming,
one creates the COM Client.

3. Programming of the simulation via Vissim-COM with specific commands, e.g.
e simulation setting (multiple and automated runs),
¢ vehicle behavior,
e evaluation during simulation run (online),
o traffic-responsive signal control logic.

4. Simulation running form COM program.

To understand the Vissim-COM concept, see the figure below which depicts a part of the
Vissim-COM object model. The Vissim-COM is based on a strict object hierarchy with two
kinds of object types:

e collections (array, list): store individual objects, references to the objects; the
collection names in the Vissim-COM object model are always in plural, e.g. ‘Links’.
The interface for this object is the ‘ILinks’ interface. References to the objects can
be accessed via the ‘ILinkCollection’ interface.

e containers: store a single object, the objects themselves; the container names are
always in singular, e.g. ‘Link’. The interface for this object is the ‘ILink’ interface.
The objects themselves can be accessed via the ‘ILinkContainer’ interface.

“This distinction between containers and collections is needed because objects are linked to

one another. Adding new objects or deleting objects is only possible in the container.” (PTV,
2023)

The letter ‘I’ always represents the interface for the object.

The objects are in a hierarchical structure of which the head is the main Vissim object.
IVissim is the interface representing the Vissim object. Only one main object can be defined
and all other objects belong to the main object.

— INet]

— |Areas
— ILinks ILink |

I |:: ILanes |
1

I IPoints3D |

IGraphics

|Area |

T: ol

1. The Vissim-COM object hierarchy (PTV, 2023)

The full Vissim-COM object hierarchy model is described in the Online Help of Vissim that
can be accessed via the Vissim GUI. Click on Help\COM Help...\Objects. To access the
IVissim interface, representing the Vissim object, click on 1Vissim (see fig. 2). Under the
Public Properties headline you can see eight properties that return object instances. These are
Evaluation, Graphics, Liscencelnfo, Net, Optima, Presentation, ScenarioManagement and
Simulation. Thus IEvaluation, IGraphics, ILiscencelnfo, INet, IOptima, IPresentation,
IScenarioManagement and ISimulation interfaces, representing the Evaluation, Graphics,
Liscencelnfo, Net, Optima, Presentation, ScenarioManagement and Simulation objects, are
available.

[Vissim COM Interface Documentation - O X

e =
Elrejtés Keresés Vissza Myomtatdas Beallitasok

Targymutaté Keresés] R AN - vissim - COM = MVissim
Ija be a keresett szavakat: ——

_ IVissim
| fvizsim j - PExpand All

Témakarik I_istézésa| Megielenite: ||| & Summary

Temakdrkivalasddsa: Taldlatok: 51 Interface representing a PTV Vissim instance

Cim | Hely | Sar ¢

Vissim Vi Public Methods

Vissim Aftributes Vi.. 2 = H i

Vissim Relations Vi.. 3 Public Propertles

Wissim Referenc.. Vi.. 4 .

Simulation Prope.. Vi.. 5 = AttValue Set attribute value

N.etF'roperty V' b F Evaluation Returns an Evaluation object instance.
Licenselnfo Prop... Vi.. 7

InternalTests Pro... Vi.. & = Graphics Returns a Graphics object instance.
CreateCloudMod... Vi.. 9

Evaluation Property Vi.. 10 oy InternalTests Internal test function.

AttValue Property Vi.. 11 . . .
VissimTestCmd .. Vi 12 = Licenselnfo Returns a Licenselnfo object instance.
Exit Method Vi.. 13 . .
SetResultsFolder . Vi 14 B et Returns a MNet object instance.
SaveMetAs Method Vi.. 13 = Optima Returns a Optima object instance.
SaveMet Method Vi.. 16

MNew Method Vi 17 2 Presentation Returns a Presentation object instance.
PlaceUnderScen... Vi.. 18) o
ResumeUpdateG. Vi 19 oy ScenarioManagement Retums a ScenarioManagement object instance.
SaveCloudModel ... Vi.. 20 ’ ’ : " - :
ExporToodelAr. Vi, 21 = Simulation Retuns a Simulation object instance.
Log Method Vi.. 22

I nadPraiact Math Vi 97 = See Also

< >

WiEE | KRy Attributes

™ Keresés a korabbi gredményben
¥ Hasonlé szavak keresése
[~ Keresés csak cimekben Copyright ® 2022 FTV Flanung Transport Weskehr GmbH VISSIM

2. Accessing the objects of Vissim (Vissim COM help)

To understand the object model, consider the following example, which represents the
access to a given road link:

1. Below the main interface ‘IVissim’ (representing the ‘Vissim’ object, see fig. 1) you
can find the ‘INet’ interface (representing the ‘Net’ object), which compasses all
network functionalities.

Collections are situated below object ‘Net” (of which the interface is ‘INet”).

3. Collection ‘Links’ (of which the interface is ‘ILinkContainer’) contains the references
to the links of the network (previously defined via Vissim GUI). ‘Links’ is a Public
Property of ‘INet’. The Link objects themselves are contained in the Links object for
which ‘ILinkCollection’ is the interface (The same is valid for e.g. ‘Areas’ and
‘IAreaCollection’).

4. To access a given ‘Link’ object, one needs to define ‘Vissim’, ‘Net’, and ‘Links’
objects. ‘ILinkContainer’ (and containers generally) has a Public Property called
‘ItemByKey’ that makes it possible to access the ‘ILink’ interface for a specific Link
object

5. After accessing the given ‘Link’, one may apply Vissim-COM methods (e.g.
‘RecalculateSpline’), as well as query or set attributes (e.g. ‘NAME”).

N

This example is presented now by Visual Basic Script language. This practically shows the
access to Link 10 (after the apostrophe character you can read comments):

Set vis = CreateObject(‘Vissim.Vissim’) 'define Vissim main object
Set vnet = vis.Net ‘define Net object

vis.LoadNet(‘D:\Example\test.inpx’) '‘Load the traffic network
Set links = vnet.Links ‘define Links collection
Set link_10 = links.ltemByKey(10) '‘Query Link 10 as an object

1.3 How to use Matlab or Python for Vissim-COM programming?

In the following chapters the Vissim-COM programming is introduced by using Matlab
Script language and at the very end in Python code. For this the Vissim-COM interface
manual (PTV, 2023) used to provide a detailed help until Vissim version 5 but since then
the official offline help is significantly less detailed. Instead of that you can use the online
help (in the Vissim GUI click on Help\COM Help...) or the official examples provided for
Vissim. Although the examples of this official manual are basically written in Visual Basic,
the document also provides a short help so that we can transform the scripts into other
programming languages (therefore into Matlab or Python environment) as well. The
principle of COM programming is the same written in any language.

One of the main advantages of using Matlab and Python is the simplicity of the script
language. Another very important aspect is that Matlab (as a mathematical software package
for practical purposes) has a lot of built-in functions, such as Python has a plethora of
libaries. For example, optimization tasks can be solved with the help of simple Matlab or
Python commands, statistical functions can be called freely or simple matrix usage can be
achieved. With the functions provided by Matlab or Python a lot of time and energy can be
spared compared to other programming languages. Therefore, if you are programming the
Vissim traffic simulator via COM, but you also want to perform special operations (e.g.
optimization), it is highly recommended to choose the Matlab or Python scripting as the
basic language for programming Vissim-COM.

Important technical information is that before creating a Vissim-COM program, you must
register the Vissim as a COM-server in your operating system (so that other applications can
access Vissim-COM objects). You can do the registration during the installation process or
after the installation of Vissim by clicking on menu ‘Help/Register COM Server’.

Note that in the sequel Matlab script based Vissim-COM program is introduced but at the
very end of the document you will find the full code in Python as well (Section 10).

2 Creating Vissim-COM server in Matlab

User may create a script file (extension ‘.m’) in Matlab with the ‘File/New/Script’ menu or
with the white paper icon located in the toolbar (see figure below).

Find Files == Insert el = . ~ L@) &})
i % Ec?] ?’ s E L) [=] Run Section (L
=| Col - GoTo + Comment 95 - i
MNew Save Il"-l it EH ° o & ‘{';l Breakpoints Run Run and I%Amranoe Run and
- - > =i Prit (| Find = Indent =R - ~ Advance Time
NAVIGATE EDIT BREAKPOINTS RUN

< A F Cor Vissim_Com_Matlab »
Current Folder = BE Editor - C\Vissim_Com_Matlab\test.m

Name | test.m |+ |

test.results 1 £Vissim-COM programming
........ testinpd |l 2= clear a1
[test.inpx 2= close all;
|] test.layx
ﬁ test.m

|:] test1.sig

Command Window

fe >=

3. Creating Matlab Script file (extension <.m’)

In the Matlab Script code you can write comments after the % sign.
It is useful to start “.m’ files with two basic commands:

clear all;

close all;

The first deletes the contents of the Matlab workspace, i.e. the currently used variables and
their values. Delete is very useful to avoid errors, e.g. the remained values of the variables
in the previous executing may cause confusion. The second command closes all of the
opened Matlab windows (e.g. diagrams) in one step.

Creating a new COM server (other name ActiveX) is possible with the use of the Matlab
command ‘actxserver’:

vis=actxserver("VISSIM.vissim’)

For detailed information about a Matlab command use the Command Window and write the
‘help’ before the command e.g.

help actxserver

3 Vissim-COM methods

Object methods created via the Vissim-COM server are also accessible in the Command
Window. The list of the objects can be found in the Vissim-COM Interface Manual (PTV,
2021). We can access the method list of each object if we type the object’s name and the
‘methods’ command with a dot between them into the Command Window:

{Vissim-COM object name}.methods

The method above can only be used if the object written between the curly braces was
defined beforehand. For example take a look at the following figure, which can be used for

the object ‘vis’ (main object predefined in the previous chapter), and shows the list of all
methods.

Command |
>> wvis=actxserver ('VISSIM.vissim');
>> vis.methods
Methods for class COM.VISSIM wvissim:
ApplyModelTransferFile LoadLayout constructorargs
AttValue LoadNet delete
BringToFront LoadProject deleteproperty
CreateCloudModel Log events
Exit Hew get
ExportToModelArchive PlaceUnderScenarioManagement interfaces
GenerateModelTransferFile ResumeUpdateGUL invoke
GenerateModelTransferFileBetweenFiles SaveCloudModel load
ImportANM SaveLayout move
ImportCoordinateRoutes SaveNet propedit
ImportOpenDrive SaveNeths release
ImportResults SetResultsFolder save
LoadCloudModel SuspendUpdateGUI send
LoadCloudModelFromDisk VissimTestCmd set
LoadCloudModelFromServer addproperty

fr oo |

4. Getting the method list of the object ‘vis’ in Matlab

From the method list above the ‘invoke’ is shown below as an example.

»> vis.invoke

AttValue = Variant AttValue (handle, ustring)
New = void New(handls)
LoadlNet = void LoadNet (handle, Var:

LoadProject

ianc (Optional))
void LoadProject (handle, ustring)

gToFront (handle)

oManagement = void PlaceUnderScenaricManagement (handle, ustring,

id ImportCoordinateRoutes (handle, ustring, bool, bool, Var:

ustring)

iant (Optional))

string, ustring)

, ustring, Variant(Optional))

eenFiles (nandle, ustring, ustring, ustring, Variant (Optional))

Log = void Log(handle, MessagePriority, ustring)
ImportOpenDrive = void ImportOpenDrive (handle, ustring, Variant (Optional})
ExporctToModelArchive = void ExportToModelArchive (handle)

LoadClouddodel = void LoadCloudModel (handle, ustring)
LoadClouddodelFromServer = void LoadCloudModelFromServer (handle,

ustring)
LoadClouddodelFromDisk = void LoadClouddodelFromDisk (handle, ustring)

CreateCloudiodel 1d CreateCloudModel (handle,
SaveClouddodel = void S

uscring)
aveClouddodel (handle, bool)
S>>

5. The answer of Matlab Command Window to the ‘invoke’ command of a Vissim-
COM object

As it can be seen, the list shows the available methods with the return value types and

arguments. The ‘variant’ is a variable type which involves several types. ‘void’ means that
the method does not have any return values.

Similarly, the methods concerning any other Vissim-COM object can be listed analogously.

Another useful Matlab command is applicable to reveal the properties of an object. This can
be done by ’fields’ command:

{Vissim-COM object name}.fields

Command Window

»>>» wis.fields
ans =
o=l cell array

{'Het'
{'Simnmlation’
{'Evaluation'
{'Graphics"
{'ScenarioManagement'
{'Presentation'
{'InternalTests"
{'LicenseInfo’
{'Optima’

ﬁg>>|

e e e e e e e

6. The answer of Matlab Command Window to the ‘fields’ command of a Vissim-
COM object

4 Loading of Vissim network

In case of Vissim-COM programming you must create the simulation network and its
elements on the graphic interface of the Vissim. You will get a project file that has an .inpx
extension, and a ‘Layout’ file with .layx extension. Then, you can infuse them from the
COM program with ‘LoadNet’ and ‘LoadLayout’ methods. While you use them you can
give them to the Vissim files with their direct access path that shows the destination of the
files with the letter of the driver and name of the containing folders, i.e.

vis.LoadNet('D:\Vissim_Com_Matlab\test.inpx’);
vis.LoadLayout('D:\Vissim_Com_Matlab\test.layx");

But there is also a possibility to give a relative access path, and that is the better solution.
You should only use the ‘pwd” command from Matlab, and it shows the access path of the
current folder (see figure below).

APPS EDITOR PUBLISH
I:ll ||:' - E L] Find Files < 2 nsert | fx - l> L@ _ (5>
_ N L%| Run Section L
[iz/ compare » CGoTo v Comment 95 ‘4]
New Open Save — — Breakpoints Run Run and l% Advance Run and

- - ~ [yPrint « Find = Indent do| |Zak - * Advance Time
gm/__m\ EDIT EREAKFOINTS RUN

<f P 5 = b b Vissim_Com_Matlab »

Current Folder @ | Command Wi
Mame pwd
test.results ans =
| | testinp0 'C:\Vissim Com Matlab'
E testinpx ﬁu; = - -
|| test.layx
ﬂ test.m
| | test.sig

7. Using the ‘pwd’ command in Matlab command line

You can load the network with relative access path as follows:
access_path=pwd;

vis.LoadNet([access_path \test.inpx']);
vis.LoadLayout([access_path "\test.layx']);

Using the relative access path is very useful if you wish to run the Vissim project on
different computers. You should only copy the project folder onto the current computer and
open the Matlab Script file from there. Thus, there is no need to refresh the whole path of
the Vissim project folder before running the code.

5 General simulation adjustments in Vissim-COM program

Hereinafter we introduce the setting of object properties and attributes. We describe the
simulation adjustments as a specific example, but of course the method is the same with
other objects as well.

For simulation settings first you must define the ‘ISimulation’ object that can be found
under the main object in the hierarchy-model of Vissim-COM (see below). We can do that
via the previously defined main object called ‘vis’:

sim=vis.Simulation;

[IVissim | (vis)

I—{ ISimulation | (sim)

8. ‘Simulation’ is below the main object ‘Vissim’ in hierarchy; between the round
brackets you can read the name of the object used in the sample code

5.1 Object properties

Every Vissim-COM object has properties (‘Property’). We can query the properties of the
objects with the ‘get” method. In case of the ‘Simulation’ object there is only one, it can be

seen in the figure below.

Command Window

oo sim.ges D query of all the properties of the given object B

MesoSectsForMi¢roSim: [1x1 Interface.BAABAC44 76AA 49D1 91EF A39B8S8BDADCE]

£ >>

9. Query of the ‘Simulation’ object with ‘get’ command

5.2 Object attributes

Objects have so-called attributes (‘Attribute’) as well. To reach them you must use the
‘AttValue’ method.

The attributes can be found in the Vissim Online Help via the Vissim GUI (click on
Help\COM Help...).

im - CON = |[Simulation

ELMENLT Attributes

Overview [WCollapse All

= Summary
|dentifier Short name Long name
Comment Comment Comment
IsRunning IsRunning Is running

|sSimBreakAtActive

MesoSectsForMicroSim

IsSimBreakAtActive

|s simulation break at active

MumCores NumCaores Mumber of cores
MumRuns NumRuns Mumber of runs
RandSeed RandSeed Random seed

RandSeedincr

RandSeedincr

Random seed increment

RetroSync RetroSync Retrospective synchronization
SimBreakAt SimBreakAt Simulation break at

SimMode SimMode Simulation mode

SimPeriod SimPeriod Simulation period

SimRes SimRes Simulation resolution

SimSec SimSec Simulation second

SimSpeed SimSpeed Simulation speed
SimTmOfDay SimTmOfDay Simulation time (time of day)
StartDate StartDate Start date

StartTm StartTm Start time

StartTmOfMDay StartTmOfDay Start time (time of day)
UseAllCores UseAllCores Use all cores
UseMaxSimSpeed UseMaxSimSpeed Use maximum simulation speed

VolumelncrDynAssign VolumelncrDynAssign WVolume increment (dynamic assignment)

10. Part of the attribute table of the ‘Simulation’ object (PTV COM Help)

There are read-only and editable attributes. By clicking on the name of the identifier the
‘Type’ and ‘Editable’ fields show you whether the attribute is editable or not, and if it is
whether you can edit its value during the simulation or not. For an example see the figure
below.

“ simRes = simPeriod
Value type unsigned int32 Value type durationinSeconds
Editable true Editable true

Simulation Behavior EditableDuringSim

Simulation Behavior ReadOnlyDuringSim
Type Optional Type Optional
Minimum 1 Minimum i
Mo 20 Maximum 2678400
LA 10 Default value 3600
= simSec

Value type preciseDurationinSeconds

Editable false

Simulation Behavior ReadOnlyDuringSim

Type Calculated

Minimum 0

11. Editable and not editable attributes of ‘Simulation’

10

Syntax of the usage of the ‘AttValue’ method in the case of readout (‘get’) and for change
(‘set’) is as follows:

sim.get(‘AttValue', {"attribute'});
sim.set('AttValue', {'attribute'}, {adjustable value});
In connection with the figure above:

sim.get('AttValue', 'SimSec'); %(SimSec is read-only, so the ‘set’
command is not allowed.)

Another example to set the length of the simulation in Matlab Script file:
period_time=3600;

sim.set('AttValue', 'SimPeriod’, period_time); %(You can edit it only outside the
simulation.)
sim.get('AttValue', 'SimPeriod’) %(The answer will be 3600.)

As another example, we mention the ‘Simulation Resolution’ property. This represents
how many times the Vissim traffic model runs in a second during the simulation. We
can change it with the following code:

step_time=3;

sim.set('AttVValue', 'SimRes', step_time); %(The ‘SimRes’ attribute can only
be set at full simulation seconds)

sim.get('AttValue', 'SimRes') %(The answer will be 3.)

There is an alternate syntax for reading Vissim attributes which is entirely equivalent to the
“get” method:

sim.AttValue({'attribute'});

An example is given below:
sim.AttValue('SimPeriod) < sim.get(‘AttValue', 'SimPeriod’)

11

6 Running a simulation

Using Vissim there are three ways to run a simulation:

e ‘RunContinuous’: continuous running,

e ‘RunSingleStep’: running step-by-step, i.e. the time interval between steps will be
simulated according to the ‘Simulation Resolution’ setting,

e ‘RunMulti’: multiple simulations in a row.

We point out the ‘RunSingleStep’ method since this way makes it easy to manipulate the
simulation ‘online’, i.e. during the simulation run (for example changing the traffic demands
continuously).

‘RunSingleStep’ is recommended to use with a ‘for’ loop. In the following example we run
a simulation which shows the elapsed simulation time at each step (‘period_time’ and
‘step_time’ variables are defined previously).

for i=0:(period_time* step_time)
sim.RunSingleStep;
sim.get('AttValue', 'SimSec');
end

While using ‘RunSingleStep’, the ‘Simulation Speed’ setting has no effect on the running
speed of the simulation. In this case, the simulation runs step by step according to the “for’
loop, by running each ‘time step’ on the maximum speed is possible. Therefore, using the
above method the simulation speed can be controlled by Matlab ‘pause’ command (e.g. to
slow down the simulation for visual observation). In the following example, a 500 ms long
pause is inserted after each simulated time step:

for i=0:(period_time*step_time)
sim.RunSingleStep;
pause(0.5);

end

It must be noted that the ‘Snapshot’ functionality (for warm simulation start) has been
totally removed from version 10 of Vissim. The last version was Vissim 5 where
‘SaveSnapshot’ and ‘LoadSnapshot’ methods were included. The official site of PTV
reports that this functionality will be available in one of the future version of Vissim.

12

7 Traffic generation

Vissim-COM makes it possible to dynamically change traffic demands, which is very
useful, for example in the following cases:
e to run several simulations with different traffic demands (possibly by ‘MultiRun’
method),
e to generate varying traffic demand by following the traffic changes of a day (during
the simulation run).

First of all, the “‘Net” object has to be created, which is located below the main object in the
Vissim-COM hierarchy model (see figure below). This can be achieved through the main
object ‘vis’ (already defined above):

vnet=vis.Net;

INet |

! IVehiclelnputs | |lVeh|cIelnput l

12. ‘Vehiclelnput’ object in the Vissim-COM hierarchy (on the basis of PTV, 2023)

Next the “Vehiclelnputs’ collection has to be created which contains all vehicle inputs
(‘Vehiclelnput®), defined in the Vissim GUI:

vehins=vnet.Vehiclelnputs;

Via the “Vehiclelnputs’ collection any ‘Vehiclelnput’ object becomes accessible by using
the ‘ItemByKey’ method, e.g.:

vehin_1=vehins.ltemByKey(1);

The given ‘Vehiclelnput’ object is easily editable through ‘AttValue’ method (by using the
attributes in figure below).

13

== Wissim - COM > Wehiclelnput

WELITEE LA Attributes

Overview [WCollapse All

= Summary
ldentifier Short name Long name
Cont Cont Continued

DelaylLatent

DelaylLatent

Delay (latent)

Demlatent Demlatent Demand (latent)
Label Label Label

LabPosRel

LabPosRelPt LabPosRelPt Label position relative

LabPosRelWktPoint

LabPosRel\WktPoint

Label position relative (VWKT)

LabPosRelX LabPosRelX Label position relative (x)
LabPosRelY LabPosRelY Label position relative (y)
LatWGS84 LatWGS84 Latitude (WGS 84)

Link

LongWGS84 LongWGS84 Longitude (WGS 84)
Name Name Name

No No MNumber

ShowLabel ShowlLabel Show label
TimelntVehVols

VehComp VehComp Vehicle composition
VolType VolType Volume type

Volume Volume Volume

WhtLoc Whktloc WKT location
WhitLocWGSE4 WhtLocWGS84 WKT location (WG584)
Zone

13. The attribute table of the ‘Vehiclelnput’ object (PTV Vissim COM Help)

An example for the modification of a traffic volume attribute in the first time interval of

vehicle inputs:

vehin_1.set('AttValue', 'Volume(1)', 600); %(in Volume(1) the ‘1° stands for the first

time interval)

14

8. Traffic signal control, detectors

Traffic light control can be programmed via COM interface as well. However, the
previously mentioned VisVAP module (flow chart based programming) or Signal Controller
APl interface (on C++ language) can also be applied for traffic signal programming.

The traffic signal control within Vissim-COM object model is shown in the figure below.

| Vissim

B L —

|| ISignalControllers |—— ISignalControlier |
T

IDetectors | —{ IDetector |

ISignalGroups |—{ ISignaiGroup |

—— [SignalHeads |—{ |SignalHead |

14. Components of traffic signal control within Vissim-COM object model (on the
basis of PTV, 2023)

Now, a simple example is provided to demonstrate traffic signal control via Vissim-COM.

A simple signalized intersection is given (see the figure below), where two one-way roads (a
main road and a side street) meet. There are two signal groups operating in the junction. By
default, the main road is operated by a constant green time signal. At the same time, the
signal group of the side road only gets green time when the loop detector is activated. This
is the so-called demand-actuated traffic signaling. The system checks the loop detector’s
availability in every 20 seconds. The demand-actuated stage has 20 seconds.

Network Editor

E-FR O 0B U EaQesa- Yoo 7 @ Ka
=8

e

@ Demand detector Main road

¢ \

Side street

15. Simple intersection in Vissim with traffic demand actuated control

First you must create the necessary elements in the Vissim GUI:

15

e define signal control system in ‘Signal Control/Edit Controllers’ menu, by choosing
‘Fixed time’ controller (later it will be operated as a traffic-responsive controller from
COM program);

e create signal groups (‘Signal Group’) with a given signal program (shown in the
figure below);

[vissig - Signal Controller 1 = m] X

File [[Edit |
8|19 O @ [=

A

Name: |Signal program 1

=] D Signal Controller 1 Intergreens: Cycle time: Offset: Switching time:

[3: Intergreen matrix 1 v 60 _;, lo é 0 ’%‘

@/ Signal groups

Signal |
eatn 40 50 oo I I O

No Signal group

J@ 1: Signal group 1

.|l 2: Signal group 2 q

(-1 i Intergreen matrices
T¢ stages »
m Stage assignments

E Stage sequence editing

=72 Signal programs

™ 1. Signal program 1

{8 Interstages

2 Signal group 2

{8 Daily signal program list

16. Create “Signal Group’ in Vissim GUI with signal plan

e locate signal heads (‘Signal Head’) on the main and side roads;
e |ocate demand detector on the side street (‘Detector’).

Then, the signal controller should be defined through Vissim-COM ‘SignalControllers’
collection:

scs=vnet.SignalControllers;

sc=scs.ltemByKey(1); %(Signal Controller 1)
Create signal group objects through ‘SignalGroups’ collection:
sgs=sc.SGs;

sg_1=sgs. ItemByKey (1); %(Signal Group 1)
sg_2=sgs. ltemByKey (2); %(Signal Group 2)

Additionally, define a loop detector object for traffic demand sensing:
dets=sc.Detectors;

det_all=dets.GetAll; %(All detectors are queried first)
det_1=det_all{1}, %(The first detector of the detectors)

The signals of the signal groups can be controlled by ‘SigState’ attribute of SignalGroup’
object with the correct codes (see figure below), e.g. setting red signal for State 1:

sg_1l.set('AttValue', 'SigState’, 1);

16

=> Vissim - COM > SignalizationState Fnumeration

S EL P e Enumeration

rCollapze Al
= Members

Member Walue Summary

SignalizationStateAlternatingRedGreen 10

SignalizationStateAmber 4
SignalizationStateFlashingAmber 7
SignalizationStateFlashingGreen 9
SignalizationStateFlashingRed 8
SignalizationStateGreen 3
SignalizationStateGreenAmber 11
SignalizationStateOff 5
SignalizationStateRed 1
SignalizationStateRedAmber 2
SignalizationStatelndefined 6
Copyright ® 2023 FTV Flanung Transport Verkehr GmbH

17. ‘State’ attribute codes of ‘SignalGroup’ (PTV Vissim COM Help)

Status of the loop detector is queried also through the ‘AttValue’ method by various
attributes e.g.:

det_1.get("AttValue', 'Detection’);

det_1.get(‘AttValue', 'Impulse’);

det_1.get("AttValue', 'Occup’); %(Occupancy)
det_1.get('AttValue', 'Presence’);

In addition to the above, the traffic-responsive logic is created by ‘rem’ command of Matlab
(which gives back the remainder after a division of two numbers):

17

for i=0:(period_time*step_time)
sim.RunSingleStep;
if rem(i/step_time,20)==0 % verifying at every 20 seconds
demand=det_1.get('AttValue', 'Presence’); % verifying detector occupancy: 0/1
if demand==1 % demand -> demand-actuated stage
sg_l.set('AttValue','SigState’,1); % main road red (1)
sg_2.set('AttValue','SigState',3); % side street green (3)
else % no demand -> main road is green
sg_1.set('AttValue', 'SigState’, 3);
sg_2.set('AttValue', 'SigState’, 1);
end
end
end

So that it is easier to understand the logic, in the example above we neglected the intergreen
times between the two phases and we did not use transition signals (red-amber, amber). To
create them, further programming is necessary.

18

8 Evaluation while the program is running

An important advantage of the Vissim-COM is the possibility of evaluation while the
program is running. The following example is shown from the numerous evaluation options.
We consider the evaluation of data collection points through
‘DataCollectionMeasurements’.

Data Collection Points can be used effectively with the Vissim GUI. They can be positioned
on any link in the road network, furthermore they are suitable for measuring several
parameters in the given cross section (e.g. acceleration, number of vehicles, occupancy).

You can reach the measurements of the given data collection point through the ‘Data
Collection Measurements’ field and the ‘ltemByKey’ method:
datapoints=vnet.DataCollectionMeasurements;

datapointl=datapoints.ltemByKey(1);

For the evaluation of the data collection points via Vissim-COM (even while the program is

running) the ‘IDataCollectionMeasurement’ attributes can be used with the appropriate
parameters (see figure below).

== Wigsim - COM = [DataCollectionMeazurement

IDataCollectionMeasurementfi\ulgle N (23

Overview [MCollapse Al

= Summary
Identifier Short name Long name
Acceleration Acceleration Acceleration

DataCollectionPoints

Dist Dist Distance

Length Length Length

Mame Mame MName

Mo Mo MNumber

OccupRate OccupRate Occupancy rate

Pers Pers Persons

Queuelelay QueueDelay Queue delay
SpeedAvghrith Speedfvghrith Speed (arithmetic average)
SpeedAvgHarm SpeedAvgHarm Speed (harmonic average)
Wehs Wehs Vehicles

18. The ‘IDataCollectionMeasurement’ attributes that can be queried (PTV Vissim
COM Help)

The following code is an example for it:
datapointl.get(‘AttValue', 'Speed(19, 2, All));

19

where the elements in brackets are:

e parameter to query;

e the number of the simulation run (now: 19);

e the number of the time interval (now: 2);

e Vehicle Class, where ‘All’ value includes all vehicle classes.

Result attributes can be saved for multiple simulation runs, time intervals and different
vehicle classes. It is possible to access all saved result values by COM. To access these
values three sub attributes are required given in the figure below. You can replace the
constant (19 and 2 in the example above) sub-attributes with periodic inputs.

1 SimulationRun 1,2,3, ._or number according to the attribute No of simulation runs (see
current Simulation Runs list) or Current for the simulation run
currently running

Avg, StdDev, aggregated value of all simulations runs

Min, Max
2 Timelnterval 1,2,3 .. or index of one specific time interval (the index for time intervals
Last always starts at 1 which refers to the first time interval) or

Last to reference to the last completed time interval.

Avg, StdDev, aggregated value of all time intervals of one simulation

Min, Max
Total sum over all time intervals of one simulation

3 VehicleClass 10,20, ..or one or more vehicle class numbers (according to the attribute
nll No of Vehicle Classes) or k11 Data is shown only for the

vehicle classes defined here.

19. Sub-attributes’ table (PTV, 2023)

However, generally sub-attributes ‘Current’ and ‘Last’ (see their meaning in Fig. 19.) are
suggested to be used only, e.g. datapointl.get('AttValue', 'Speed(Current, Last, All)");

Another option to evaluate the simulation while the program is running is the network
performance measurement. Using this object, the total or average value of network
performance indicators can be determined, e.g. emissions, average speed or total travel time.
For the evaluation of network performance, the ‘IVehicleNetworkPerformanceMeasurement’
attributes can be used with the parameters in figure below (non-exhaustive list).

20

== Vigsim - COM = WehicleNetworkPerformanceMeasurement

IVehicleNetworkPerformanceMeasurementf:ugl 10 (=13

COwerview [¥Collapse All

= Summary
Identifier Short name Long name
DelayAvg DelayAvg Delay (average)
DelaylLatent DelaylLatent Delay (latent)
DelayStophvg DelayStopAvg Delay stopped (average)
DelayStopTot DelayStopTot Delay stopped (total)
DelayTat DelayTat Delay (total)
DemandLatent DemandLatent Demand (latent)
DistTot DistTot Distance (total)
Emissions13BUT Emissions13B8UT Emissions 1,3-Butadiens
Emissions224TMP Emissions224TMP Emissions 2,2 4-trimethylpentane
EmissionsAcetaldehyde EmissionsAcetaldehyde Emissions Acetaldehyde
EmissionsBenzene EmissionsBenzene Emissions benzene
EmissionsCH4 EmissionsCH4 Emissions CH4
EmissionsCO EmissionsCO Emissions CO
EmissionsCO2 EmissionsCO2 Emissions CO2

20. The ‘IVehicleNetworkPerformanceMeasurement’ attributes that can be queried
(PTV Vissim COM Help)

The following example concerns the total network travel time. First, the object needs to be
added:

netperform=vnet.VehicleNetworkPerformanceMeasurement;
For getting the total travel time at each for-loop run, the following line is added:

netperform.get('AttValue', "TravTmTot(Current, Last, All)")

The sub-attributes of ‘TravImTot’ in parentheses are (SimulationRun, Timelnterval,
VehicleClass) as shown in Figure 19. As suggested earlier, ‘Current’ and ‘Last’ sub-attributes
are used.

An indispensable condition of measurements by data collection points and network
measurements is (even by using Vissim-COM) that the options of ‘Data Collections\Collect
data’ and ‘Vehicle network performance\Collect data’ are flagged (and well configured) in
‘Evaluation\Configuration...\Result Attributes’ menu in the Vissim GUI. The time interval of
data collections and network measurements are also important. You will get an average (or
total) value for the measured factors in each time interval. The shorter the interval is the more
sophisticated results you get. The adjustment and the evaluation results are depicted in the
figure below.

21

©® =0BRI $R EAQ+E

- LT

(K S I R sguigop: R EOE

VOb 7 @ Ra

B £valuation Configuration

Evaluation output directory: [C:\Vissim_Com_Matlab\|

Result Management Result Attributes Direct Output
Additionally collect data for these classes:

.Coun!:1|No [Name [Type |CycTm |CycTmisVar |SupplyFilel

1 1] |Fixed Time | o |vissig.config

Vehicle Classes Pedestrian Classes
10: Car 10: Man, Woman
20: HGV 30: Wheelchair User
30: Bus
40: Tram
50: Pedestrian
60: Bike
Collect data From-time To-time Interval

Area O 0| 99999 99999
Areas & ramps P 0| 99999| 9gaea
Data collections (=) o] 99999 9%;)
Delays T o 99999
Links [m] 0| 99999 20| More...
Meso edges O 0| 99999 99999
Nodes [m] 0| 99999 99999 More.. |
OD pairs O 0| 99999 99999
Parking lot groups (] 0 99999| 99999
Parking lots O 0| 99999 99999
Parking routing decisions (] 0 99999| 99999
Parking spaces (] 0 99999| 99999
Pedestrian Grid Cells [m] 0| 99999 99999 More...
Pedestrian network performance] 0| 99999 99999

travel times O 0| 99999 99999
Queue counters] 0| 99999 99999 More...
Vehicle inputs A 0| 99999 \
Vehicle network performance | () o o ((2])
Vehicle travel times ~T o] 99999 More.. |

Data Collection Points = Data Collection Measurements Signal Controllers / Signal groups

21. Evaluation configuration and evaluation results

22

9 Full example code for Vissim-COM programming with Matlab

A sample code for Vissim-COM programming (written in Matlab) is presented below based
on the examples introduced in this manual.

%% Vissim-COM programming - example code %%
clear all;

close all;

format compact;

clc; % Clears the command window

%% Create Vissim-COM server

vis=actxserver ('VISSIM.vissim') ;

%% Loading the traffic network
access_path=pwd;

vis.LoadNet ([access_path "\test.inpx']);
vis.LoadLayout ([access_path "\test.layx']);
%% Simulation settings

sim=vis.Simulation;

period_time=3600;

sim.set('AttValue', 'SimPeriod', period time);
step_time=3;
sim.set('AttValue', 'SimRes',6 step time);

%% Define the network object
vnet=vis.Net;
%% Setting the traffic demands of the network
vehins=vnet.VehicleInputs;
vehin l=vehins.ItemByKey (1) ;
vehin_1l.set('AttValue', 'Volume(l)', 1500); % main road
vehin_2=vehins.ItemByKey (2) ;
vehin 2.set('AttValue', 'Volume(l)', 100); % side street
%% The objects of the traffic signal control
scs=vnet.SignalControllers;
sc=scs.ItemByKey (1) ;
sgs=sc.SGs; % SGs=SignalGroups
sg_l=sgs.ItemByKey (1) ;
sg_2=sgs.ItemByKey (2) ;
dets=sc.Detectors;
det all=dets.GetAll;
det_l=det all{l};
%% to measure total travel time in the network
netperform=vnet.VehicleNetworkPerformanceMeasurement;
%% Access to DataCollectionPoint object
datapoints=vnet.DataCollectionMeasurements;
datapointl=datapoints.ItemByKey (1) ;
%% Access to Link object
links=vnet.Links;
link 1=links.ItemByKey (1) ;
%% Running the simulation
verify=20; % verifying at every 20 seconds
$Evaluation\Configuration...\Interval in the Vissim GUI
for i=0: (period_ time*step_time)
sim.RunSingleStep;
if rem(i/step_time, verify)==0 % verifying at every 20 seconds
demand=det_1.get('AttValue',6 'Presence'); %get detector occupancy:0/1
if demand==1 % demand -> demand-actuated stage
sg_l.set('AttValue', 'SigState', 1); % main road red (1)
sg_2.set('AttValue', 'SigState', 3); % side street green (3)
else % no demand on loop -> main road's signal is green
sg_l.set('AttValue', 'SigState', 3);
sg_2.set('AttValue', 'SigState', 1);
%total travel time at the end of each eval. interval:
disp('Travel time of the network: ')
% TravTmTot's subattributes in parentheses:
% (SimulationRun, TimeInterval, VehicleClass)
netperform.get ('AttValue', 'TravImTot (Current,Last,All) ")

end
% Query the avg. speed and vehicle number at the end of each eval. interval:
datapointl.get('AttValue', 'Vehs(Current, Last, All)')
datapointl.get('AttValue', 'Speed(Current, Last, All)')

end
end
%% Delete Vissim-COM server (also closes the Vissim GUI)
vis.release;
disp('The end')

23

10 Full example code for Vissim-COM programming with Python

A sample code for Vissim-COM programming (written in Python) is presented below based
on the examples introduced in this manual.

#Vissim-COM programming - Python example code
from _ future__ import print_function

import os

COM-Server

#this needs module install: >> pip install pywin32
import win32com.client as com

Connecting the COM Server

Vissim = com.gencache.EnsureDispatch("Vissim.Vissim")

once the cache has been generated, its faster to call Dispatch which also creates the
connection to Vissim.

vis = com.Dispatch("Vissim.Vissim")

Loading the traffic network

Filename = os.path.join(os.path.abspath(os.getcwd()), 'test.inpx')

flag read additionally = False # you can read network (elements) additionally, in this case set
"flag read additionally" to true

vis.LoadNet (Filename, flag read additionally)

Load a Layout:
Filename = os.path.join(os.path.abspath(os.getcwd()), 'test.layx')
vis.LoadLayout (Filename)

Simulation settings

period time = 3600 # simulation second [s]
vis.Simulation.SetAttValue('SimPeriod', period_time)
step_time=3

vis.Simulation.SetAttValue('SimRes', step time)

sim=vis.Simulation # create Simulation COM-interface
vnet=vis.Net # create Net COM-interface

Setting the traffic demands of the network
vehins=vnet.VehicleInputs
vehin_l=vehins.ItemByKey (1)

vehin 1.SetAttValue('Volume(1l)', 1500) # main road
vehin 2=vehins.ItemByKey (2)
vehin 2.SetAttValue('Volume(1l)', 100) # side street

#'Volume (1) ' means the first defined time interval

The objects of the traffic signal control
scs=vnet.SignalControllers
sc=scs.ItemByKey(l)# sc = SignalController 1
sgs = sc.SGs # sgs=SignalGroups

sg 1 = sgs.ItemByKey(l) # SignalGroup 1
sg 2 = sgs.ItemByKey(2) # SignalGroup 2

dets = sc.Detectors

det_all = dets.GetAll() #All detectors are queried first

det_1 = det_all[0] #The first detector of the detectors

Note that in Python tuple the 1lst element is called by 0, although in Vissim GUI its number
is 1!

Measure total travel time in the network
netperform=vnet.VehicleNetworkPerformanceMeasurement

Access to DataCollectionPoint object
datapoints = vnet.DataCollectionMeasurements
datapointl = datapoints.ItemByKey (1)

Access to Link object

links = vnet.Links

link 1 = links.ItemByKey (1)

Running the simulation

To run the simulation continuous (it stops at breakpoint or end of simulation):
sim.RunContinuous ()

Activate QuickMode: vis.Graphics.CurrentNetworkWindow.SetAttValue ("QuickMode", 1)
Set maximum speed: sim.SetAttValue ('UseMaxSimSpeed', True)

24

verify=20; # verifying at every 20 seconds
Also set it in Vissim GUI! Here: Evaluation\Configuration...\Interval
vis.SaveNetAs (os.path.join (os.path.abspath(os.getcwd()), 'test.inpx'))

for i in range(0,period_time*step_time):
sim.RunSingleStep ()

if (i / step_time) % verify == 0: # verifying at every 20 seconds
demand = det_1l.AttValue('Presence') # get detector occupancy:0/1
print (demand)
if demand ==

sg_1l.SetAttValue('SigState',1l) # main road red (1)

sg_2.SetAttValue('SigState',3) # side street green (3)
else: # no demand on loop -> main road's signal is green

sg_l.SetAttValue('SigState',3)

sg_2.SetAttValue('SigState', 1)

total travel time at the end of each eval. interval:

print('Travel time of the network: ')

TravTmTot's subattributes in parentheses:

(SimulationRun, TimelInterval, VehicleClass)

print (netperform.AttValue ('TravTmTot (Current,Last,All) "))

Query the avg. speed and vehicle number at the end of each eval.

print (datapointl.AttValue ('Vehs (Current, Last, All)'))
print (datapointl.AttValue ('Speed(Current, Last, All)'))

End Vissim and shut down the COM interface
vis = None

interval:

25

11 Bibliography
Box D. Essential COM, Addison-Wesley, ISBN 0-201-63446-5, 1998

PTV Vissim 2023, Introduction to the COM API, PTV Planung Transport Verkehr AG,
Germany, 2023

Wiedemann R. Simulation des StraBenverkehrsflusses Schriftenreihe des Instituts fiir
Verkehrswesen der Universitiat Karlsruhe, Heft 8, 1974

26

