

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Vehicle a	utomatio	n systen	ns	
2. Subject name in Hungarian	Járművek automatiz	zálási rendszerei			
3. Code	BMEKOGGM659	4. Evaluation type	exam grade	5. Credits	4
6. Weekly contact hours	2 (10) Lecture	0 (0) Practice	2 (11) Lab	·	
7. Curriculum	Vehicle Engineering MSc (J)	8. Role	Specialization ((sp) at Vehicle Engine	ering MSc (J)
9. Working hours	for fulfilling the req	uirements of the si	ubject		120
Contact hours	56	Preparation for seminars	18	Homework	16
Reading written materials	20	Midterm preparation	0	Exam preparation	10
10. Department	Department of Au	tomotive Technolo	gies		
11. Responsible lecturer	Dr. Szalay Zsolt				
12. Lecturers	Dr. Szalay Zsolt, Dr.	Török Árpád, Dr. Til	nanyi Viktor		_
13. Prerequisites					
14. Description of	lectures				

Presentation of the framework for vehicle automation, architectures built into electronic control units, sensors, actuators and communication systems, and their classification. Description of vehicle control systems. Functions and tasks of the different control layers, elements of the sensor layer, driver interface, trajectory planning, decision making, command line design, and intelligent actuators for executive systems. The need for redundancy based on functional and safety requirements. Introducing and classifying in-vehicle communications technology used in the automotive industry. Control unit communication (serial, I2C, SPI), communication between control units (CAN, LIN, MOST, FlexRay, OPEN), vehicle-vehicle connection (V2V) and vehicle-infrastructure communication (V2I), telemetry systems. Structure and operation of vehicle diagnostics protocols (K-Line, KWP, UDS).

15. Description of practices

16. Description of labortory practices

The task is to work out an network and communication related topic including realization, testing and documentation

17. Learning outcomes

- A. Knowledge
 - Knowledge of network and communication systems
- B. Skills
 - Ability to develop network and communication systems
- C. Attitudes
 - Openness to new opportunities in the field
- D. Autonomy and Responsibility
 - Participate in solving independent task

18. Requirements, way to determine a grade (obtain a signature)

Signature: Individual task fullfilment Final grade equals to the result of exam

19. Opportunity for repeat/retake and delayed completion

Individual taks replacement one

20. Learning materials

Slides

·
