

## **Budapest University of Technology and Economics**

# **Faculty of Transportation Engineering and Vehicle Enginee**

| 1. Subject name              | Measurement systems in vehicle manufacturing |                                                            |                |                  |     |  |
|------------------------------|----------------------------------------------|------------------------------------------------------------|----------------|------------------|-----|--|
| 2. Subject name in Hungarian | Járműgyártási méréstechnika                  |                                                            |                |                  |     |  |
| 3. Code                      | BMEKOGGM652                                  | 4. Evaluation type                                         | mid-term grade | 5. Credits       | 5   |  |
| 6. Weekly contact hours      | 2 (10) Lecture                               | 0 (0) Practice                                             | 2 (11) Lab     |                  |     |  |
| 7. Curriculum                | Vehicle<br>Engineering MSc<br>(J)            | 8. Role Specialization (sp) at Vehicle Engineering MSc (J) |                |                  |     |  |
| 9. Working hours             | for fulfilling the req                       | uirements of the si                                        | ubject         |                  | 150 |  |
| Contact hours                | 56                                           | Preparation for seminars                                   | 18             | Homework         | 8   |  |
| Reading written materials    | 54                                           | Midterm preparation                                        | 4              | Exam preparation | 10  |  |
| 10. Department               | Department of Automotive Technologies        |                                                            |                |                  |     |  |
| 11. Responsible lecturer     | Dr. Bánlaki Pál                              |                                                            |                |                  |     |  |
| 12. Lecturers                | Dr. Bánlaki Pál                              |                                                            |                |                  |     |  |
| 13. Prerequisites            |                                              |                                                            |                |                  |     |  |
| 14 Description of            | lectures                                     |                                                            |                |                  |     |  |

Basic concepts of measurement technology, measurement methods, measurement errors, systematic errors, accidental errors, law of error summing. Measuring instruments: length gauges, constant values (measuring columns, gauges), variable length gauges, mechanics (caliper, micrometer, fine probes, gauges), optical (optometer, length measuring machine, workshop microscope, laser interferometer), angular measuring tools, methods, pneumatic, electrical sensors and measuring systems. Coordinate measuring machines, spatial measurements.

Typical measurement tasks and tools: shape failure measurements, position error measurements, surface characteristics (surface roughness, topography), gear measurements, thread measurements.

Design of measurement technology, within the system and at the finished piece. Measuring tool management.

Automatic size control. Surface digitization. Process measurement technology (temperature, vibration, force, torque, etc.), monitoring systems.

Calibration and calibration of measuring instruments. Statistical Process Control (SPC).

## 15. Description of practices

#### 16. Description of labortory practices

Complex Measurements (length, shape, surface, 1D, 2D, 3D measurements. 3D surface and shape digitising, scanning methods.

## 17. Learning outcomes

## A. Knowledge

- The student has to know the basic measurement procedures and equipments used in the course of vehicle manufacturin processes.
- The student has to know the theoretical basics of metrology, the problems to be solved in the XXI. century, and the demands connected tp to Industry 0 progress.

#### B. Skills

- The student is able to apply the learnt procedures and equipments in a professional way.
- The student is able to support the related research and development processes.

#### C. Attitudes

- Strives for active participation in lectures and practices.
- D. Autonomy and Responsibility
  - Accepts the frameworks for completing the subject, and performs its tasks independently and responsibly, in accordance with ethical norms.
  - Apply responsibly the knowledge acquired during the course with regard to their validity limits.

## 18. Requirements, way to determine a grade (obtain a signature)

The conditions for obtaining the final signature are the completing the midterm test, (20%), taking part on all the labs, and submiting an acceptable individual task (30%).

The subject can be fulfilled by an written final exam (50%). There is an opportunity to make up each tasks on the base of ad hoc discussions.

## 19. Opportunity for repeat/retake and delayed completion

The midterm test and the individual task can be retaken once.

## 20. Learning materials

Slides and presentation notes

|  | Effective date | 10 October 2019 | This Subject Datasheet is valid for | Inactive courses |
|--|----------------|-----------------|-------------------------------------|------------------|
|--|----------------|-----------------|-------------------------------------|------------------|