

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Vehicle s	uperstruc	cture des	ian		
2. Subject name in Hungarian	Vehicle superstructure design Járműfelépítmény tervezés					
3. Code	BMEKOJSM667	4. Evaluation type	mid-term grade	5. Credits	5	
6. Weekly contact hours	2 (10) Lecture	0 (0) Practice	2 (11) Lab	•	•	
7. Curriculum	Vehicle Engineering MSc (J)	8. Role	Specialization (sp) at Vehicle Engineering MSc (J)			
9. Working hours	Working hours for fulfilling the requirements of the subject				150	
Contact hours	56	Preparation for seminars	18	Homework	50	
Reading written materials	12	Midterm preparation	4	Exam preparation	10	
10. Department	Department of Railway Vehicles and Vehicle System Analysis					
11. Responsible lecturer	Dr. Lovas László					
12. Lecturers	Dr. Galambosi Frigyes, Dr. Susánszki Zoltán					
13. Prerequisites	strong: KOJSM664 - Superstructure preliminary design					
14. Description of	lectures					
Construction layouts stiffness).	s, regarding manufac	turing and tooling. Op	otimisation of supers	structures (manufactur	ring, weight,	

15. Description of practices

16. Description of labortory practices

Complete superstructure design using CAD tools.

17. Learning outcomes

A. Knowledge

- the student knows the usual processes in superstructure manufacturing
- knows the special requirements for manufacturing tubes, sheet metals, elastic covers
- knows the superstructure optimisation possibilities concerning shape, size and weight
- knows the principles fo the continous improvement in vehicle industry

B. Skills

- the student is able to prepare the core of a superstructure design of a given type
- is able to prepare a design for easy manufacturing
- is able to optimize the superstructure layout upon given requirements
- is able to perform a superstructure design task alone
- is able to realize the sufficiently detailed numerical model of a superstructure

C. Attitudes

- the student makes an effort to gather all the available informations in a given domain
- cooperates with his fellow students and the teacher
- is open minded towards new and innovative ideas and researches
- uses informatical and computational devices for his work

D. Autonomy and Responsibility

- the student is conscient about his responsibility towards the society and his company
- · asks for the colleagues' expertise and judgement when working
- · considers challenges with responsibility

18. Requirements, way to determine a grade (obtain a signature)

1 semestrial project work, 1 non-compulsory test. Details for computing the final mark can be find in the subject requirements.

19. Opportunity for repeat/retake and delayed completion

Second test possibility for those not present on the test, possibility of delayed deadline for homework

20. Learning materials							
Lecture notes							
Effective date	10 October 2019	This Subject Datasheet is valid for	Inactive courses				