

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Ship motions						
2. Subject name in Hungarian	Hajók dinamikája	ajók dinamikája					
3. Code	BMEKOVRM624	4. Evaluation type	exam grade	5. Credits	4		
6. Weekly contact hours	2 (11) Lecture	1 (5) Practice	1 (5) Lab		-		
7. Curriculum	Vehicle Engineering MSc (J)	8. Role	Specialization (sp) at Vehicle Engineering MSc (J)				
9. Working hours	for fulfilling the req	uirements of the su	ubject		120		
Contact hours	56	Preparation for seminars	15	Homework	15		
Reading written materials	19	Midterm preparation	0	Exam preparation	15		
10. Department	Department of Aeronautics and Naval Architectures						
11. Responsible lecturer	Dr. Hargitai L. Csaba						
12. Lecturers	Dr. Hargitai Csaba						
13. Prerequisites							
14. Description of	lectures						
Coordinate systems maneuver, the theor	of ships and their rel y of seakeeping. Con	ationship. Motion equicept and calculation	ations of ships ba of added masses.	sed on Newtonian mech Methods for representa	nanics. The theory of tion of forces acting		

on the hull in motion equations. Elemental maneuvers with motion equations. Basics of wave equations, wave spectra. Dynamics of propulsion system.

15. Description of practices

Students are practicing different ship dynamics calculations.

16. Description of labortory practices

In laboratory practice, students use a computer program to calculate the seakeeping properties of a ship and analyze the results.

17. Learning outcomes

A. Knowledge

- Knows and understand the coordinate systems that are used to describe ship motions and their relationships.
- She/he is familiar with the motion equations of ships based on Newtonian mechanics.
- She/he knows the concept of added masses and basic methods of calculation.
- She/ he knows the elementary oscillations of ships and their calculations with motion equations.
- Based on the linear maneuver theory, she/he knows how to calculate elementary maneuvers with motion equations.
- · She /he knows the basics of wave equations and wave spectra. Knows the principles and structure of roll
- stabilisation systems used on ships.

B. Skills

- She/he can perform seakeeping tests using a computer program.
- She/he can estimate the expected maneuverability characteristics of a ship.
- She/he can calculate the propulsion system dynamics.
- C. Attitudes
 - Interested, responsive, independent, take care for the deadlines.
- D. Autonomy and Responsibility
 - Pro-activity in professional work, the self-standing selection of the relevant solution methods.
 - Making decision circumspectly.

18. Requirements, way to determine a grade (obtain a signature)

Mid-term requirement: preparing 1 semestrial home work

Final grade: 1 exam (measuring the theoretical knowledge), 1 semestrial home work, the final grade is the average of the parts

19. Opportunity for repeat/retake and delayed completion

20. Learning materials

Dr. Kovács ADr. Benedek Z.: A hajók elmélete						
Komm F.: Hajók kézikönyv						
Hargitai Cs.: Hajók dinamikája						
J. Brix: Manoeuvring Technical Manual						
E. Trupper: Basic ship theory						
E. Lewis: Principles of naval architectures						
Effective date	10 October 2019	This Subject Datasheet is valid for	Inactive courses			