

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Mechatronic design of vehicle systems				
2. Subject name in Hungarian	Gépjármű-mechatronikai rendszerek tervezése				
3. Code	BMEKOGGM622	4. Evaluation type	mid-term grade	5. Credits	5
6. Weekly contact hours	2 (10) Lecture	0 (0) Practice	2 (11) Lab		
7. Curriculum	Vehicle Engineering MSc (J)	8. Role	Specialization (sp) at Vehicle Engineering MSc (J)		
9. Working hours f	for fulfilling the req	uirements of the s	ubject		150
Contact hours	56	Preparation for seminars	18	Homework	58
Reading written materials	8	Midterm preparation	0	Exam preparation	10
10. Department	Department of Automotive Technologies				
11. Responsible lecturer	Dr. Tihanyi Viktor				
12. Lecturers	Dr. Tihanyi Viktor				
13. Prerequisites					

14. Description of lectures

Elektromechanics fundaments

Electric machine types

Construction of electric machines

Losses, temperature rise and cooling of electric machines

Modeling of electric machines

Power electronics

Losses, temperature rise and cooling of power electronics

Control of actuators

Connectors

Automotive requirements of mechatronic systems

Complex mechatronic systems

15. Description of practices

16. Description of labortory practices

Self chosen mechatronic system evaluation

17. Learning outcomes

- A. Knowledge
 - Knowledge of Mechatronics
- B. Skills
 - · Ability to develop mechatronic units
- C. Attitudes
 - Openness to new opportunities in the field
- D. Autonomy and Responsibility
 - Participate in solving independent task

18. Requirements, way to determine a grade (obtain a signature)

An individual task fullfilment is required for the signiture. The final mark will be provided taking the exam result and the individual task result into account with weighted average of 60-40%.

19. Opportunity for repeat/retake and delayed completion

Individual taks replacement one

20. Learning materials

Slides

Effective date 10 October 2019 This Subject Datasheet is valid for Inactive courses