

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Suspension design					
2. Subject name in Hungarian	Futómű-tervezés					
3. Code	BMEKOGJM613	4. Evaluation type	exam grade	5. Credits	4	
6. Weekly contact hours	2 (10) Lecture	0 (0) Practice	2 (11) Lab	·		
7. Curriculum	Vehicle Engineering MSc (J)	8. Role	Specialization (sp) at Vehicle Engineering MSc (J)			
9. Working hours	for fulfilling the req	uirements of the s	ubject		120	
Contact hours	56	Preparation for seminars	18	Homework	0	
Reading written materials	26	Midterm preparation	10	Exam preparation	10	
10. Department	Department of Automotive Technologies					
11. Responsible lecturer	Dr. Zöldy Máté					
12. Lecturers	Harth Péter, Szabó Bálint					
13. Prerequisites						
14. Description of	lectures					

The analysis of the forces acting on the wheel of the vehicle is a function of modern wheel models, the static and dynamic geometric characteristics of the wheel for planning. Geometric design of wheel suspension, strength dimensioning of individual suspension elements (rods, arms, ball joints, rubber pads). Vibration analysis of the vehicle for the requirements of the design of the suspension, geometry and strength dimensioning of the elements of the springs (springs, shock absorbers, stabilizers, limiting elements). Dynamic testing of vehicle braking to determine design requirements, methods of dividing brake force per axle, designing the braking system in principle, geometry, strength, heat and flow geometry of each element. Based on dynamic analysis of steering, defining the starting data required for the design of the steering system, constructing the steering mechanism, geometric and strength dimensioning of each element (trapezoidal arm, track bar, steering wheel, steering wheel and shaft, ball joints).

15. Description of practices

16. Description of labortory practices

Semester planning task desgin on computer, consultation.

17. Learning outcomes

- A. Knowledge
 - Knowledge of vehicle dynamics.
- B. Skills
 - Able to improve vehicle dynamics.
- C. Attitudes
 - Openness to new opportunities in the field.
- D. Autonomy and Responsibility
 - Participate in solving independent task.

18. Requirements, way to determine a grade (obtain a signature)

During the semester 1 midterm test has to be completed with more the 50 % of the maximal points.

The conditions for obtaining the signature are the completing the midterm test. Final grade equals to the result of the written exam.

19. Opportunity for repeat/retake and delayed completion

The midterm test can be retaken once.

20. Learning materials

Slides and presentation notes

Effective date 10 October 2019 This Subject Datasheet is valid for Inactive courses