

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Transmis	ssion syst	em desi	ign	
2. Subject name in Hungarian	Erőátvitel tervezése				
3. Code	BMEKOGJM612	4. Evaluation type	exam grade	5. Credits	4
6. Weekly contact hours	2 (10) Lecture	0 (0) Practice	2 (11) Lab	•	
7. Curriculum	Vehicle Engineering MSc (J)	8. Role	Specialization ((sp) at Vehicle Engine	ering MSc (J)
9. Working hours	for fulfilling the req	uirements of the s	ubject		120
Contact hours	56	Preparation for seminars	18	Homework	0
Reading written materials	26	Midterm preparation	10	Exam preparation	10
10. Department	Department of Automotive Technologies				
11. Responsible lecturer	Dr. Zöldy Máté				
12. Lecturers	Vass Sándor				
13. Prerequisites					
14. Description of	lectures				_

Design of a selected power transmission unit (camshaft, gearbox or driven bridge) for an internal combustion engine, hybrid drive chain, or electric vehicle. Determination of main dimensions based on vehicle dynamics calculations, geometric dimensioning of individual components, gears, shafts, bearing strength and lifetime of bearings, design and dimensioning of actuating mechanisms, design of enclosure housings, mounting elements.

15. Description of practices

16. Description of labortory practices

Semester planning task desgin on computer, consultation.

17. Learning outcomes

- A. Knowledge
 - Knowledge of power units.
- B. Skills
 - Ability to develop power units.
- C. Attitudes
 - Openness to new opportunities in the field.
- D. Autonomy and Responsibility
 - Participate in solving independent task.

18. Requirements, way to determine a grade (obtain a signature)

During the semester 1 midterm test has to be completed with more the 50 % of the maximal points.

The conditions for obtaining the signature are the completing the midterm test. Final grade equals to the result of the written exam.

19. Opportunity for repeat/retake and delayed completion

The midterm test can be retaken once.

20. Learning materials

Slides and presentation notes

Effective date 10 October 2019 This Subject Datasheet is valid for Inactive courses
