Tantárgyi Adatlap

PDF letöltése
Budapesti Műszaki és Gazdaságtudományi Egyetem
Közlekedésmérnöki és Járműmérnöki Kar
1. Tantárgy neve Járműrendszerdinamika I.
2. Tantárgy angol neve Vehicle system dynamics I.
3. Tantárgykód BMEKOVJD007 4. Követelmény vizsga 5. Kredit 4
6. Óraszám 2 (0) Előadás 0 (0) Gyakorlat 0 (0) Labor
7. Tanterv
Doktori képzés (D)
8. Szerep
Alap
9. A tantágy elvégzéséhez szükgésges tanulmányi munkaóra összesen 120
Kontakt óra 28 Órára készülés 30 Házi feladat 0
Írásos tananyag 30 Zárthelyire készülés 0 Vizsgafelkészülés 32
10. Felelős tanszék Vasúti Járművek és Járműrendszeranalízis Tanszék
11. Felelős oktató Dr. Zobory István
12. Oktatók Dr. Zobory István
13. Előtanulmány  
14. Előadás tematikája
A rendszerdinamikai problémáknál alkalmazott vizsgálati módszerek. Rendszeridentifikáció a legkisebb négyzetek módszerével. Gépészeti rendszer jellemzése logikai hatásvázlattal. Erő-gerjesztett és útgerjesztett csillapított lengőrendszer logikai hatásvázlata. Súrlódásos fékezésű járműkerék logikai hatásvázlata a csúszó-súrlódás és a gördülő érintkezés tribológiai jellemzőinek beépítésével. Járműhajtásrendszer indítási folyamat hatásvázlata. Dízelmotor fordulatszám szabályozó rendszerének dinamikai modellje. A motor-regulátor rendszer egyszerűsített hatásvázlata. A regulátor rendszeregyenleteinek konstrukciója hüvelysúrlódás, hidraulikus erősítés és ideális motor esetére. A dinamikai rendszerek megjelenítése struktúra gráffal. A mechanikai és a villamos rendszerek analógiája. A dinamikai hálózatok hurok és csomóponti egyenleteinek felírása, valamint az ívekre vonatkozó elemi összefüggések. A mechanikai impedancia. Példák gerjesztett és csillapított lengőrendszerek struktúra-gráfjának meghatározására elemi komplex harmonikus, valamint komplex periodikus és aperiodikus gerjesztés esetén. A dinamikai rendszerek megjelenítése jelfolyam ábra felrajzolásával. Koncentrált paraméterű dinamikai rendszerek mozgásegyenleteinek konstrukciója szintetikus és analitikus módszerrel. A Lagrange-féle másodfajú egyenletek. A lineáris dinamikai rendszerek általános elmélete. Rendszerjellemzés az időtartományban, a súlyfüggvény és az átmeneti függvény. Gerjesztett rendszer kezelése, a konvolúciós integrál és a Duhamel-integrál. Rendszerjellemzés a frekvenciatartományban. A komplex frekvencia függvény. Periodikus, aperiodikus és másodrendben gyengén stacionárius sztochasztikus folyamattal gerjesztett lineáris dinamikai rendszerek válaszának elemzése. A rendszerjellemzők alakulása MIMO rendszerek esetében. A koherencia függvény.
15. Gyakorlat tematikája
 
16. Labor tematikája
 
17. Tanulási eredmények
A. Tudás   B. Képesség
  • Széleskörűen ismeri, alkotó módon értelmezi, és kutatómunkájábnan képes innovatív módon alkalmazni: a hatásvázlat, a struktúra gráf és a jelfolyam ábra felhasználását járműdinamikai rendszerek elemzéséhez; mozgásegyenletek előállításának analítikus és szintetikus módszereit; a dinamikai rendszer idő- és frekvencia-tartományban történő jellemzésének módszereit.
C. Attitűd   D. Önállóság és felelősség
  • Törekszik az új tudományos eredmények megismerésére, azokat felelősséggel alkalmazza, alkotó módon kezdeményes új tudásterületi kutatásokat.
18. Az aláírás megszerzésének feltétele, az aláírás érvényessége
Az aláírás megszerzésének és egyúttal a vizsgára bocsátásnak a feltétele az előadásokon való rendszeres részvétel. A vizsga írásbeli, minden hét anyagából 1 kérdés, összesen 14 kérdés.
19. Pótlási lehetőségek
A TVSZ szabályozásának megfelelően.
20. Jegyzet, tankönyv, felhasználható irodalom
1. Zobory, I.: Járműrendszerdinamika I. Kézirat. BME Vasúti Járművek és Járműrendszeranalízis Tanszék. Budapest, 2011.
2. Brown, F.T.: Engineering System Dynamics. Taylor & Francis, Boca Raton, London, New-York, 2007
Tantárgyleírás érvényessége 2019. november 27. Jelen TAD az alábbi félévre érvényes Nem induló tárgyak