

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Selected	chapters	from as	trodynamic	CS	
2. Subject name in Hungarian	Válogatott fejezetek az asztrodinamikából (PHD)					
3. Code	BMEKOMED019	4. Evaluation type	exam grade	5. Credits	2	
6. Weekly contact a	2 (0) Lecture	0 (0) Practice	0 (0) Lab	,		
7. Curriculum	PhD Programme	8. Role	Specific course	9		
9. Working hours fo	or fulfilling the req	uirements of the si	ubject		60	
Contact hours	28	Preparation for seminars	7	Homework	7	
Reading written materials	7	Midterm preparation	0	Exam preparation	11	
10. Department	Department of Railway Vehicles and Vehicle System Analysis					
11. Responsible lecturer	Dr. Béda Péter					
12. Lecturers	Dr. Béda Péter					
13. Prerequisites						
14. Description of le	ectures					

Double satellite systems, satellite systems.

15. Description of practices

16. Description of labortory practices

17. Learning outcomes

- A. Knowledge
 - Methods of the space mechanics.
- B. Skills
 - Description of motion of planets, satellites, rockets. Model building.
- C. Attitudes
 - Being open to understand and learn novelties on that given domain.
- D. Autonomy and Responsibility
 - Evaluation and choice of optimal model element.

18. Requirements, way to determine a grade (obtain a signature)

Semester note upon succesful realisation of the homework and an oral exam.

19. Opportunity for repeat/retake and delayed completion

Essay secondary deadlines precised in the lessons requirements.

20. Learning materials

Effective date	27 November 2019	This Subject Datasheet is valid for	Inactive courses