

Faculty of Transportation Engineering and Vehicle Enginee

Application of AI in vehicle industry PhD

2. Subject name in Hungarian	Neurális hálók járműipari alkalmazása				
3. Code	BMEKOGGD805	4. Evaluation type	exam grade	5. Credits	3
6. Weekly contact hours	3 (0) Lecture	0 (0) Practice	0 (0) Lab		
7. Curriculum	PhD Programme	8. Role	Specific course		
9. Working hours f	for fulfilling the rec	uirements of the s	ubject		90
Contact hours	14	Preparation for seminars	14	Homework	12
Reading written materials	20	Midterm preparation	30	Exam preparation	0
10. Department	Department of Automotive Technologies				
11. Responsible lecturer	Dr. Zöldy Máté				
12. Lecturers	Dr. Zöldy Máté				
13. Prerequisites					
14. Description of	lectures				

Artificial Intelligence is based on applications in the automotive industry. Machine Learning and Neural Networks for Homologization. Automotive AI Use Cases. Market barriers and challenges a AI forecasts for automotive applications in neural networks.

15. Description of practices

16. Description of labortory practices

17. Learning outcomes

A. Knowledge

• Is familiar with the images presented in the subject and the individual procedures of the internal relationships.

B. Skills

• Capable of all procedures and research.

C. Attitudes

• Openness to new opportunities in the field.

D. Autonomy and Responsibility

• Autonomy and responsibility: a vehicle for solving research task.

18. Requirements, way to determine a grade (obtain a signature)

Knowing the curriculum and application of it. The exam is oral.

19. Opportunity for repeat/retake and delayed completion

There is one occasion to retake the exam.

20. Learning materials

Autonomous Vehicle Driverless Self-Driving Cars and Artificial Intelligence: Practical Advances in AI and Machine LearningEffective date27 November 2019This Subject Datasheet is valid forInactive courses