Final exam and three homeworks. 20. Learning materials **Effective date** 19. Opportunity for repeat/retake and delayed completion 27 November 2019 This Subject Datasheet is valid for Inactive courses ## **Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Enginee** | 1. Subject name | Reinforce | ement Lea | arning fo | or vehicle c | ontrol | |---|---|---|---|--|---| | 2. Subject name
in Hungarian | Megerősítéses tanulás a járműirányításban | | | | | | 3. Code | BMEKOKAD017 | 4. Evaluation type | exam grade | 5. Credits | 3 | | 6. Weekly contact
hours | 2 (0) Lecture | 0 (0) Practice | 0 (0) Lab | | | | 7. Curriculum | PhD Programme | 8. Role | Specific course | | | | 9. Working hours | for fulfilling the req | uirements of the s | ubject 90 | | | | Contact hours | 28 | Preparation for seminars | 14 | Homework | 30 | | Reading written materials | 0 | Midterm preparation | 0 | Exam preparation | 18 | | 10. Department | Department of Control for Transportation and Vehicle Systems | | | | | | 11. Responsible
lecturer | Dr. Bécsi Tamás | | | | | | 12. Lecturers | Dr Bécsi Tamás, Dr. Aradi Szilárd | | | | | | 13. Prerequisites | | | | | | | 14. Description of | lectures | | | | | | algorithms. Curse of
Classic solutions for
teaching, general no
Demonstrator and d | f dimensions. The Mar
self-learning system
etwork structures. Dis
emonstration, policy,
a. Variations of Q lear | arkov decision model,
is, case study for rout
screte, continuous and
loss function and alg | the hidden Mark
ing algorithms. Fu
d regular tasks. R
porithms. Value ba | c heuristics. Effectiveness
ov decision model. Trace
undamentals of neural ne
leverse learning, Imitation
ased learning, Q-learning
earning algorithms, Polic | ability problem.
tworks, supervised
n learning.
. The exploration- | | 15. Description of | practices | | | | | | | | | | | | | 16. Description of | labortory practices | 5 | | | | | 17. Learning outco | | | | | | | | | | 0.00 | | | | A. Knowledge B. Sk | | a grade (obtain a s | <u> </u> | | |