Subject Datasheet
Download PDFBudapest University of Technology and Economics | |
Faculty of Transportation Engineering and Vehicle Engineering |
1. Subject name | Vehicle system dynamics III. | ||||
2. Subject name in Hungarian | Járműrendszerdinamika III. | ||||
3. Code | BMEKOVJD014 | 4. Evaluation type | exam grade | 5. Credits | 4 |
6. Weekly contact hours | 2 (0) Lecture | 0 (0) Practice | 0 (0) Lab | ||
7. Curriculum | PhD Programme |
8. Role | Basic course |
||
9. Working hours for fulfilling the requirements of the subject | 120 | ||||
Contact hours | 28 | Preparation for seminars | 30 | Homework | 0 |
Reading written materials | 30 | Midterm preparation | 0 | Exam preparation | 32 |
10. Department | Department of Aeronautics and Naval Architectures | ||||
11. Responsible lecturer | Dr. Szabó András | ||||
12. Lecturers | Dr. Szabó András | ||||
13. Prerequisites | recommended: BMEKOVJD008 - Vehicle system dynamics II. | ||||
14. Description of lectures | |||||
Distributed parameter beam model of the transportation track on elastic foundation. Treatment of the moving load acting on the track model. Models of system dynamics: lumped parameter models, distributed parameter models and hybrid models. Connecting the track/vehicle models, complex model formation. The degree of freedom of the models. Constraint equations. Gravity point position characterising free coordinates and acceleration-coupled systems. Forces arising in the track/vehicle system. Geometric and parametric track irregularities acting on the system as excitation effects. Generation of the motion equations of the system by synthetic method. Specifying the wheel and rail profiles. Computing the normal forces acting on the rail surface. Prediction of the wheel and rail wear by simulation. Conditions of the stable running. Numerical stability analysis. Nonlinear effects after loss of dynamical stability, the limit-cycle motion. The lateral dynamical model of the railway track/vehicle system using the continuum model of the track. Numerical simulation. Beam models of different detail level of the railway track for moving vertical loads. Solution to the boundary value problem. Treatment of the complex coefficient algebraic equation emerging in the course of the numerical analysis. The combined modelling of the track and the lumped parameter vehicle moving along it, as a hybrid dynamical system. | |||||
15. Description of practices | |||||
16. Description of labortory practices | |||||
17. Learning outcomes | |||||
A. Knowledge
B. Skills
|
|||||
18. Requirements, way to determine a grade (obtain a signature) | |||||
Regular participation at the lectures and written exam. | |||||
19. Opportunity for repeat/retake and delayed completion | |||||
According to the TVSZ. | |||||
20. Learning materials | |||||
1. Szabó, A.: Járműrendszerdinamika III. Kézirat. BME Vasúti Járművek és Járműrendszeranalízis Tanszék. Budapest, 2012. 2. Zoller, V.: Elosztott paraméteres és hibrid drinamikai rendszerek. BME Vasúti Járművek és Jármű-rendszeranalízis Tanszék. Budapest, 2011. 3. Zábori, Z.. Hibrid közlekedési pálya-jármű rendszer keresztirányú dinamikája. Kézirat. BME Vasúti Járművek és Járműrendszeranalízis Tanszék. Budapest, 2010. |
|||||
Effective date | 27 November 2019 | This Subject Datasheet is valid for | Inactive courses |