

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Intelliger	nt vehicle-	road sy	stems PhD	
2. Subject name in Hungarian	Intelligens jármű-út	renszerek PhD			
3. Code	BMEKOGJD005	4. Evaluation type	exam grade	5. Credits	2
6. Weekly contact hours	2 (0) Lecture	0 (0) Practice	0 (0) Lab	v	
7. Curriculum	PhD Programme	8. Role	Specific course		
9. Working hours	for fulfilling the red	uirements of the s	ubject	120	
Contact hours	28	Preparation for seminars	14	Homework	22
Reading written materials	26	Midterm preparation	30	Exam preparation	0
10. Department	Department of Au	tomotive Technolog	gies		
11. Responsible lecturer	Dr. Tihanyi Viktor				
12. Lecturers	Dr. Tihanyi Viktor				
13. Prerequisites					
Description of	loctures				

14. Description of lectures

Our students can effectively use the knowledge of this subjects during their research on intelligent vehicle / highway systems, driver assist systems.

The course discusses the design of the systems mounted on vehicle and on its surrounding, the simulation of transportation systems.

15. Description of practices

16. Description of labortory practices

17. Learning outcomes

A. Knowledge

- Familiar with vehicle dynamics fundamentals.
- B. Skills
 - Ability to research and develop specific processes.
- C. Attitudes
 - Openness to new opportunities in the field.
- D. Autonomy and Responsibility
 - Participate in independent research task.

18. Requirements, way to determine a grade (obtain a signature)

The acquisition of the signature of the subject, and, in addition, the condition of taking exam is giving in the complete individual student homework for deadline. The exam is oral.

19. Opportunity for repeat/retake and delayed completion

There is one occasion to retake the exam.

20. Learning materials

- 1. Hans Pacejka: Tire and Vehicle Dynamics, Elsevier B-ELS-049, ISBN of 9780080970172, 2012.
- 2. Tire and Wheel Technology, 2011, SAE International SP-2296, ISBN of 978-0-7680-4735-6, 2011.
- 3. Vehicle Dynamics Stability and Control, 2011, SAE International SP-2297, ISBN of 978-0-7680-4736-3, 2011.
- 4. Rao V. Dukkipati, Jian Pang, Mohamad S. Qatu, Gang Sheng, Zuo Shuguang, Road Vehicle Dynamics, SAE International, R-366, ISBN of 978-0-7680-1643-7, 2008.

Effective date 27 November 2019 This Subject Datasheet is valid for Inactive courses	Effective date
--	----------------