Subject Datasheet
Download PDFBudapest University of Technology and Economics | |
Faculty of Transportation Engineering and Vehicle Engineering |
1. Subject name | Functionalanalysis for Engineers | ||||
2. Subject name in Hungarian | Funkcionálanalízis mérnököknek | ||||
3. Code | BMEKOVJD018 | 4. Evaluation type | exam grade | 5. Credits | 4 |
6. Weekly contact hours | 2 (0) Lecture | 0 (0) Practice | 0 (0) Lab | ||
7. Curriculum | PhD Programme |
8. Role | Basic course |
||
9. Working hours for fulfilling the requirements of the subject | 120 | ||||
Contact hours | 28 | Preparation for seminars | 30 | Homework | 0 |
Reading written materials | 30 | Midterm preparation | 0 | Exam preparation | 32 |
10. Department | Department of Aeronautics and Naval Architectures | ||||
11. Responsible lecturer | Dr. Zobory István | ||||
12. Lecturers | Dr. Zobory István | ||||
13. Prerequisites | |||||
14. Description of lectures | |||||
Linear normed spaces, operators and functionals on linear spaces. Operations among operators. Metric spaces. The Baire-theorem. Semi-norm. Compactness. Continuity of linear operators. Contraction operators. Complementary concepts. The geometry of Hilbert-spaces. Complete ortonormal systems. The Gram-Schmidt ortogonalization. The projection theorem. The ortogonal complementer. Direct-sum of Hilbert spaces. The representation theorem of Frigyes Riesz. The dual space of a linear space. Unitary and izometric operators. Fourier transform, Fourier operator. The Hahn-Banach theorem. Application of functional analysis in the numerical methods. The Ritz-process. | |||||
15. Description of practices | |||||
16. Description of labortory practices | |||||
17. Learning outcomes | |||||
A. Knowledge
B. Skills
|
|||||
18. Requirements, way to determine a grade (obtain a signature) | |||||
Regular participation at the lectures and written exam. | |||||
19. Opportunity for repeat/retake and delayed completion | |||||
According to the TVSZ. | |||||
20. Learning materials | |||||
1. Zobory I.: Funkcionálanalízis mérnököknek. Egyetemi jegyzet. Vasúti Járművek Tanszék, Budapest, 2007. 2. Máté László: Funkcionálanalízis műszakiaknak. Műszaki Könyvkiadó. Budapest, 1976. 3. Reddy, J.N.: Applied Functional Analysis and Variational Methods in Engineering. Krieger Publishing Company, Malabar, Florida, 1991. 4. Mikolás M.: Valós függvénytan és ortogonális sorok. Tankönykiadó, Budapest, 1978 |
|||||
Effective date | 27 November 2019 | This Subject Datasheet is valid for | Inactive courses |