

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Enginee

1. Subject name	Materials	Science			
2. Subject name in Hungarian	Anyagtudomány				
3. Code	BMEKOGGD001	4. Evaluation type	exam grade	5. Credits	4
6. Weekly contact hours	4 (0) Lecture	0 (0) Practice	0 (0) Lab		
7. Curriculum	PhD Programme	8. Role	Basic course		
9. Working hours f	or fulfilling the req	uirements of the si	ubject		84
Contact hours	56	Preparation for seminars	0	Homework	8
Reading written materials	8	Midterm preparation	0	Exam preparation	12
10. Department	Department of Automotive Technologies				
io. Department	-				
11. Responsible lecturer	Dr. Bán Krisztián				
11. Responsible	Dr. Bán Krisztián Dr. Bán Krisztián				

14. Description of lectures

Material structures: bonding types, materials with crystalline and amorphous structure.

Thermodynamics, diffusion, phase transitions.

Non-equilibrium systems and thermodynamics: amorphous and nanostructured materials and their properties. The role of surface in material properties.

Material properties: effect of different bonding types, defect structure (real structure) on transport, optical, magnetic and mechanical properties.

Material testing: procedures for polycrystalline materials: X-ray diffraction, texture test. SEM, DSC, TEM as test methods. Metallographic examinations, microscopic properties of structural materials, examination of grain structure. Spectroscopy. Mechanical (tensile, micro- and macro-hardness, impact energy) test methods and equipments, non-destructive testing methods for material defects. Special material testing methods.

15. Description of practices

16. Description of labortory practices

17. Learning outcomes

A. Knowledge

- Recognizes new regularities in the types of chemical bonds.
- It recognizes new laws of crystalline and amorphous structure.
- It recognizes new regularities in the field of thermodynamics.
- · It recognizes new laws of diffusion.
- It recognizes new regularities about the thermodynamic background, types, energetic relations of phase transitions, and the importance of the interface in phase transitions.
- Recognizes new regularities about types of non-equilibrium systems.
- It recognizes new regularities about the role of the interface in material properties.
- Recognizes new regularities in the properties of amorphous and nanostructured materials.
- Recognizes new regularities about the effects of different bonds, error structures (real structures
- in transport, optical, magnetic and mechanical properties.
- Recognizes new regularities with major direct structural analysis methods: XRD, texture, SEM, TEM, optical microscopy.
- It recognizes new regularities in major spectroscopic examination procedures.
- Recognizes new laws regarding the DSC test method.
- Recognizes new laws through the application of major mechanical and non-destructive material testing methods.

B. Skills

- It is capable of understanding the entire process and its elements, or of a process. plan.
- It is capable of deeper, causal, scientific analysis of a technological or measurement process.

- Can formulate suggestions for the development of a technological or measurement process.
- He / she is able to collect literature on a specific research topic for a focus question and to compile a summary based on it.
- They are able to interpret the results found in the literature.
- He / she is able to design experimental designs and research methods on a research topic.
- Able to interpret test results.

C. Attitudes

- It strives to develop its knowledge independently.
- It strives to ensure that each topic area and / or theme. look for relationships between disciplines.
- It seeks to ensure that the literature and literature. interpret your own research results individually and in teamwork, listening to the thoughts of others.
- It seeks to share its knowledge.

D. Autonomy and Responsibility

- Responsibly apply the knowledge gained in the subject subject to its limitations.
- · It manages according to ethical standards and communicates the results to others and itself.
- It seeks to carry out the task entrusted to it independently, in accordance with ethical standards.
- You are aware of the extent to which your responsibilities extend to informing your colleagues or supervisors of the results and if needed.

18. Requirements, way to determine a grade (obtain a signature)

The course ends with an oral examination.

19. Opportunity for repeat/retake and delayed completion

Possibilities for supplementation takes place in accordance with the applicable study and examination rules.

20. Learning materials

- 1. Charles Kittel: Introduction to solid state physics,
- 2. Thornton, Calangelo: Fundamentals of engineering materials, Prentice-Hall, Inc. New Jersey, 1985,
- 3. Flinn, Trojan: Engineering Materials and Their Applications,
- 4. Kalpakijan S.: Manufacturing Engineering and Technology, Prentice Hall, 2013.
- 5. Auxiliary materials and ppt's downloadable from the department website.

Effective date 27 November 2019 This Subject Datasheet is valid for	Inactive courses
---	------------------